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Abstract:
An efficient numerical method is developed to simulate compressible gas flow in porous
media coupled with compressible rocks. Since the model is strongly nonlinear and
fully coupled, it is challenging to design numerical methods that satisfy certain energy
dissipation laws. We employ a stabilization method to design a time semi-discrete scheme
that is weakly nonlinear and satisfies the energy dissipation law. Using the conservative
finite element methods with the upwind strategy, we construct the fully discretized
approximation that satisfies the laws of mass conservation and energy dissipation. The
simulation results are provided to exhibit the features of the method as proved in theory.

1. Introduction
Numerical modeling of gas flow through porous media

is of particular importance in contemporary energy indus-
tries, including environmental pollution, petroleum engineer-
ing, and geotechnical engineering (Firoozabadi, 1999; Chen
et al., 2006). Therefore, numerical simulation of gas flow in
porous media has attracted the attention of more and more
researchers (Guo et al., 2013; Polı́vka and Mikyška, 2014; El-
Amin et al., 2018). Numerical methods in literature mainly
focus on gas behavior when it flows through porous materials
and analyze important properties like pressure distribution,
and gas molar density distribution. The most commonly used
governing equations describing the complex interaction be-
tween the gas phase and the porous matrix are Darcy’s law,
mass conservation equation, and realistic equations of state to
characterize the gas compressibility (Chen et al., 2006; Kou

et al., 2022). Solid compressibility is another important factor
affecting gas flow in porous media (Chen et al., 2006; Xu
et al., 2018; Du et al., 2021; Kou et al., 2022). Appropriate
mathematical models and constitutive relations should be used
to describe the mechanical properties of the solid phase.
In this paper, we use the model of Biot’s consolidation of
poroelasticity to explain rock volume changes.

Energy dissipation is a crucial factor in accurately predict-
ing the behavior of compressible gas flow in porous media.
The energy dissipation law is straightforwardly deduced from
the second law of thermodynamics, which governs energy
behavior and the nature of physical processes. Adherence to
the energy dissipation law is essential for achieving valid and
stable numerical solutions in simulations of gas flow through
porous media (Chen et al., 2006; Lebon et al., 2008; Kou and
Sun, 2018, 2018a;).

Numerical simulations that do not properly account for
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energy dissipation laws are prone to producing inaccurate
predictions of gas flow behavior. The development of thermo-
dynamically consistent models has also attracted the attention
of researchers such as phase-field modeling (Lowengrub and
Truskinovsky, 1998; Abels et al., 2012; Shen et al., 2013;
Aki et al., 2014; Guo et al., 2017; Shokrpour Roudbari et
al., 2018; Zhu et al., 2019) and compressible multiphase flow
(Qiao and Sun, 2014; Kou and Sun, 2015, 2018). To well
simulate a thermodynamically consistent model, it is necessary
to design numerical algorithms that satisfy energy dissipation.
Various numerical methods have been explored to address
the Helmholtz free energy, such as the stabilization methods
(Xu and Tang, 2006), the convex splitting approach (Eyre et
al., 1998), the exponential time-differencing methods (Du et
al., 2021), the invariant energy quadratization (IEQ) approach
(Yang and Ju, 2017; Yang et al., 2017a) and the scalar
auxiliary variable (SAV) approach (Shen et al., 2018; Shen et
al., 2019). The IEQ and SAV approaches can lead to linear and
straightforward-to-implement time-discrete schemes that are
also energy-stable. However, the discrete energies generated
by IEQ and SAV approaches are different from the original
energy. In Kou et al. (2020, 2022) , an energy factorization
(EF) technique is introduced as a means of constructing
discrete schemes that are computationally efficient, linear in
nature, and retain the energy dissipation characteristics of the
original problem. In this paper, we adopt a novel stabilization
approach proposed in Kou et al. (2023), which can maintain
the original energy function and get a numerically stable
linear scheme. Local mass conservation is also an important
factor in the numerical modeling of compressible gas flow
in porous media. Mass-conserving numerical approaches have
been the subject of considerable attention and focus (Yue
et al., 2007; Aland and Voigt, 2012; Ding and Yuan, 2014;
Wang et al., 2015; Guo et al., 2017; Chen et al., 2019; Kou
et al., 2020). This paper adopts the discontinuous Galerkin
(DG) method to solve the poroelasticity model, and the mixed
finite element method with an upwind technique is used for
the fluid field solution. Based on these methods, we introduce
a spatial discretized approximation that can preserve the mass
conservation.

The paper is organized as follows. In Section 2, we present
the formulation of a gas flow in a porous media model that
incorporates rock compressibility effects. In Sections 3 and
4, we propose the semi-discretized and fully discretized for-
mulations of the method as well as present the corresponding
theoretical investigation. In Section 5, some numerical results
will be given to demonstrate the good performance of the
method.

2. Mathematical model
In this section, we briefly introduce the gas flow model

that incorporates rock compressibility.

2.1 Model equations
The gas flow model with compressible rocks (Chen et

al., 2024) reads:

∇ ·σ(us, p) = 0, in Ωt =: Ω× (0, t), (1a)
σ(us, p) = σe(us)−α pI, in Ωt , (1b)
∂ (cφ)

∂ t
+∇ · (cv f ) = 0, in Ωt , (1c)

v f =−cλ (φ)∇µ, in Ωt , (1d)
p = µc− f , in Ωt , (1e)
∂φ

∂ t
= (

1
N
)∂t p+α∂t∇ ·us, in Ωt , (1f)

where σe(us) = 2ηε(us) + γ div(us)I represents the elastic
stress tensor, I is the unit tensor, ε(us) := 1

2 (∇us +∇uT
s ) is

the strain tensor and us is the displacement of solid, η and γ

are the Lamé constants, c is the molar density, v f represents
the velocity of gas, p stands for the pressure of gas, α is the
Biot constant, N reflects the rock compression and φ represents
the porosity.

The homogeneous Neumann-type boundary conditions
read:

σ(us, p) ·n = 0, on ∂Ω, (2a)
v f ·n = 0, on ∂Ω, (2b)

where n is the unit outer normal of the boundary ∂Ω.
The Helmholtz energy density f (c) determined by the

equation of state (Peng and Robinson, 1976) for constant
temperature T is described as below:

f (c) = fide(c)+ frep(c)+ fatt(c), (3a)
fide (c) = cRT ln(c), (3b)
frep (c) =−cRT ln(1−βc), (3c)

fatt(c) =
b(T )c
2
√

2β
ln

(
1+(1−

√
2)βc

1+(1+
√

2)βc

)
, (3d)

where R represents the universal gas constant. The relevant
parameters can be found in the literature, for instance, (Kou
et al., 2023). The chemical potential energy µ(c) can be
expressed as:

µ(c) = f ′(c).
The total free energy is defined as (cf. Chen et al., 2024):

E(t) =
∫

Ω

(
φ f (c)+

1
2

σe(us) : ε(us)+
1

2N
|p|2
)

dx. (4)

Theorem 2.1. Assume that the boundary condition 2 holds,
then the model 1 obeys an energy dissipation law, which can
be expressed as:

∂E(t)
∂ t

=−
∫

Ω

λ (φ)|c∇µ(c)|2dx ≤ 0.

A detailed proof of Theorem 2.1 can be found in (Chen et
al., 2024).

3. Semi-discretized formulation
The section establishes a time semi-discrete scheme using

a stabilization-based approach.
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3.1 Semi-implicit formulation
We use τ = tn+1 − tn to represent the time step size. Let

Bn represent the value of B discretized at time tn and let
Dτ Bn+1 := Bn+1−Bn

τ
, where B = us,φ , p,c,E. We denote by

(·, ·) and ∥ · ∥L2(Ω) the standard inner product and norm of
L2(Ω).

This paper employs a stabilization approach. The stabilized
discrete chemical potential, involving the stabilization param-
eter θ , is defined as (Kou et al., 2023):

µ
n+1 = µ(cn)+θRT

cn+1 − cn

cn(1−βcn)2 . (5)

We introduce the semi-implicit scheme:

−∇ ·σe(un+1
s )+α∇pn+1 = 0, (6a)

Dτ(φ
n+1cn+1)+∇ · (vn+1

f cn) = 0, (6b)

vn+1
f =−λ (φ n)cn

∇µ
n+1, (6c)

pn+1 = cn
µ

n+1 − f (cn), (6d)

Dτ φ
n+1 =

1
N

Dτ pn+1 +α∇ ·Dτ un+1
s . (6e)

Theorem 3.1. Assume that 0 < ε ≤ cn ≤ 1
β
− ε , where ε is a

given small constant. If the stabilization parameter θ satisfies:

θ ≥ Nmaxcn(1−βcn)2

2RT
, (7)

where Nmax is the upper bound of | f ′′(c)| in (ε, 1
β
− ε). Then

the scheme 6 adheres to an energy decreasing law:

En+1 ≤ En,

where

En =
∫

Ω

(
φ

n f (cn)+
1
2

σe(un
s ) : ε(un

s )+
1

2N
|pn|2

)
dx. (8)

Proof. By the Taylor expansion, we have

f
(
cn+1)− f (cn) = µ (cn)

(
cn+1 − cn)+ f ′′(ξ )

2
(
cn+1 − cn)2

.

By Eq. 7 and considering the stabilized chemical potential
Eq. 5, we obtain

f
(
cn+1)− f (cn)

= µ
n+1 (cn+1 − cn)+( f ′′(ξ )

2
− θRT

cn (1−βcn)2

)(
cn+1 − cn)2

≤ µ
n+1 (cn+1 − cn) . (9)

Due to Eq. 9, we get

φ
n+1 f

(
cn+1)−φ

n f (cn)

≤ µ
n+1

φ
n+1 (cn+1 − cn)+ f (cn)

(
φ

n+1 −φ
n)

= µ
n+1 (

φ
n+1cn+1 −φ

ncn)− pn+1 (
φ

n+1 −φ
n) . (10)

Taking the L2 inner product of Eqs. 6a and 6e with Dτ un+1
s

and pn+1 and adding Eqs. 6a and 6e together, we get

2η(ε(un+1
s ),ε(Dτ un+1

s ))+ γ(∇ ·un+1
s ,∇ · (Dτ un+1

s ))

+
1
N
(Dτ pn+1, pn+1)− (Dτ φ

n+1, pn+1) = 0. (11)

The first, second, and third terms on the left-hand side of Eq.
11 can be rewritten as:

2η(ε(un+1
s ),ε(Dτ un+1

s ))

= ητ∥Dτ ε(un+1
s )∥2

L2(Ω)+ηDτ∥ε(un+1
s )∥2

L2(Ω), (12)

γ(∇ ·un+1
s ,∇ · (Dτ un+1

s )) =
γτ

2
∥∇ ·Dτ un+1

s ∥2
L2(Ω)

+
γ

2
Dτ∥∇ ·un+1

s ∥2
L2(Ω), (13)

τ

N
(Dτ pn+1, pn+1) =

τ

2N
∥Dτ pn+1∥2

L2(Ω)+
1

2N
Dτ∥pn+1∥2

L2(Ω).

(14)
Substituting Eqs. 12-14 into Eq. 11, we obtain

ητ∥ε(Dτ un+1
s )∥2

L2(Ω)+ηDτ∥ε(un+1
s )∥2

L2(Ω)

+
γτ

2
∥∇ ·Dτ un+1

s ∥2
L2(Ω)+

γ

2
Dτ∥∇ ·un+1

s ∥2
L2(Ω)

+
τ

2N
∥Dτ pn+1∥2

L2(Ω)+
1

2N
Dτ∥pn+1∥2

L2(Ω)− (Dτ φ
n+1, pn+1)

= 0. (15)
By Eq. 15, we have

1
τ

(
η∥ε(un+1

s )∥2
L2(Ω)−η∥ε(un

s )∥2
L2(Ω)

+
γ

2
∥∇ ·un+1

s ∥2
L2(Ω)−

γ

2
∥∇ ·un

s∥2
L2(Ω)

+
τ

2N
∥pn+1∥2

L2(Ω)−
τ

2N
∥pn∥2

L2(Ω)− (φ n+1 −φ
n, pn+1)

)
≤ 0. (16)

According to Eq. 8, we get the dissipation equality of the total
energy:

En+1 −En =
∫

Ω

(
φ

n+1 f (cn+1)−φ
n f (cn)

)
dx

+η∥ε(un+1
s )∥2

L2(Ω)−η∥ε(un
s )∥2

L2(Ω)

+
γ

2
∥∇ ·un+1

s ∥2
L2(Ω)−

γ

2
∥∇ ·un

s∥2
L2(Ω)

+
1

2N
∥pn+1∥2

L2(Ω)−
1

2N
∥pn∥2

L2(Ω). (17)

Using Eqs. 6b, 6c and 10, we get

τ
−1
∫

Ω

(
φ

n+1 f (cn+1)−φ
n f (cn))dx+(φ n+1 −φ

n, pn+1)
)

≤ τ
−1
∫

Ω

µ
n+1 (

φ
n+1cn+1 −φ

ncn)dx

=−
∫

Ω

µ
n+1

∇ ·
(

vn+1
f cn

)
dx

=
∫

Ω

vn+1
f · cn

∇µ
n+1dx

=−
∫

Ω

λ (φ n)
∣∣cn

∇µ
n+1∣∣2 dx. (18)

Combining Eqs. 16 and 18, we obtain

En+1 −En ≤ 0. (19)
The proof is completed.
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4. Full discretization
This section focuses on the construction of the full dis-

cretization based on the finite element methods.

4.1 Discrete formulations
The domain Ω is subdivided by a family of triangulation

grids Kh. We denote the element diameter by hK , K ∈ Kh,
and denote Vh as:

Vh :=
{

ρ ∈ L2(Ω)d : ρ|K ∈ P1(K)d ,∀K ∈ Kh

}
.

The set containing all the faces (when d = 3) or edges
(when d = 2) of the mesh Kh is denoted as Eh. We use
the notation E I

h to represent the set of interfaces for Eh. Let
Ki,K j ∈ Kh are two neighboring elements. Then there exists
e = ∂Ki∩∂K j ∈ E I

h with the unit outer normal vector ne orient
from Ki to K j. The average and jumping values for ρ ∈ Vh on
e are defined as follows:

{ρ} :=
1
2
((ρ|Ki)|e +(ρ|K j)|e), [ρ] := (ρ|Ki

)|e − (ρ|K j)|e,
where ρ|Ki represents the value of ρ in Ki. Within any
subdomain D of Ω, we denote the inner product of scalar
functions ϑ1 and ϑ2 by (ϑ1,ϑ2)D =

∫
D ϑ1ϑ2 dx, and for vector

functions ϑ1 and ϑ2 as (ϑ1,ϑ2)D =
∫

Dϑ1 ·ϑ2 dx. We use
∥ ·∥L2(D) to denote the L2-norm on D. For any edge or face e,
the inner product on the space L2(e) is represented by ⟨·, ·⟩e
and the corresponding norm is written as ∥ · ∥L2(e).

We use the upwind strategy to deal with the convection
term, the upwind value of cn

h on the interior edge is expressed
as:

cn∗
h =

{
cn

h|Ki , vn
f ,h ·ne ≥ 0,

cn
h|K j , vn

f ,h ·ne < 0.
(20)

The lowest-order Raviart-Thomas mixed finite element
space is introduced as:

Uh = {xh ∈ H(div,Ω) : xh|K ∈ RT0(K),∀K ∈ Kh} ,

Qh =
{

zh ∈ L2(Ω) : zh|K ∈ P0(K),∀K ∈ Kh
}
,

where H(div,Ω) =
{

x ∈ [L2(Ω)]d : ∇ ·x ∈ L2(Ω)
}

. Let U 0
h =

{x ∈ Uh : x ·n = 0 on ∂Ω}.
We define:

A (us,h, ph,vh)

:= ∑
K∈Kh

(σe(us,h),ε(vh))K − ∑
e∈E I

h

⟨{σe(us,h)ne}, [vh]⟩e

−α ∑
K∈Kh

(ph,∇ ·vh)K +α ∑
e∈E I

h

⟨{phne}, [vh]⟩e

− ∑
e∈E I

h

⟨[us,h],{σe(vh)ne}⟩e + ∑
e∈E I

h

θe

he
⟨[us,h], [vh]⟩e,

where θe denotes a penalty parameter and he is determined by
he = |e|

1
d−1 .

For any vh ∈ Vh,wh ∈ U 0
h ,qh,zh,ρh ∈ Qh, we find un+1

s,h ∈
Vh,vn+1

f ,h ∈ Uh,cn+1
h ,φ n+1

h , pn+1
h ∈ Qh such that

A (un+1
s,h , pn+1

h ,vh) = 0, (21a)

(Dτ(φ
n+1
h cn+1

h ),qh)+ ∑
e∈E I

h

⟨cn∗
h vn+1

f ,h ·n, [qh]⟩e = 0, (21b)

(λ−1(φ n
h )v

n+1
f ,h ,wh) = ∑

e∈E I
h

⟨[µn+1
h ],cn∗

h wh ·n⟩e, (21c)

(pn+1
h ,zh) = (cn

hµ
n+1
h − f (cn

h),zh), (21d)

(Dτ φ
n+1
h ,ρh) =

1
N
(Dτ pn+1

h ,ρh)+α(Dτ(∇ ·un+1
s,h ),ρh)

−α ∑
e∈E I

h

⟨{ρhne}, [Dτ un+1
s,h ]⟩e. (21e)

As the scheme in Eqs. 21 leads to a nonlinear system, we
use an iterative method to solve Eqs. 21:

A (un+1,l+1
s,h , pn+1,l+1

h ,vh) = 0, (22a)

(Dτ(φ
n+1,l
h cn+1,l+1

h ),qh)+ ∑
e∈E I

h

⟨cn∗
h vn+1,l+1

f ,h ·n, [qh]⟩e = 0,

(22b)

(λ−1(φ n
h )v

n+1,l+1
f ,h ,wh) = ∑

e∈E I
h

⟨[µn+1,l+1
h ],cn∗

h wh ·n⟩e, (22c)

(pn+1,l+1
h ,zh) = (cn

hµ
n+1,l+1
h − f (cn

h),zh), (22d)

(Dτ φ
n+1,l+1
h ,ρh)

=
1
N
(Dτ pn+1,l+1

h ,ρh)+α(Dτ(∇ ·un+1,l+1
s,h ),ρh)

−α ∑
e∈E I

h

⟨{ρhne}, [Dτ un+1,l+1
s,h ]⟩e, (22e)

where l and l +1 represent the iterative steps.
For given cn

h, un
s,h, vn

f ,h, φ n
h and pn

h, we choose the initial
approximations as cn+1,0

h = cn
h, un+1,0

s,h = un
s,h, vn+1,0

f ,h = vn
f ,h and

φ
n+1,0
h = φ n

h , pn+1,0
h = pn

h.

4.2 Theoretical analysis
The scheme 21 still inherits the property of energy decay

and enjoys the feature that local mass conservation and the
conservation of total mass are maintained despite the porosity
variations in both space and time.

Theorem 4.1. The scheme 21 maintains the properties of total
mass conservation and local mass conservation:

∑
K∈Kh

|K|φ n+1
h cn+1

h = ∑
K∈Kh

|K|φ n
h cn

h = · · ·= ∑
K∈Kh

|K|φ 0
h c0

h.

(23)

Proof. Let qh = 1 in K ∈Kh and qh = 0 in Kh \K in Eq. 21b,
we get

|K|
φ

n+1
h cn+1

h −φ n
h cn

h
τ

=− ∑
e∈∂K

|e|cn∗
h vn+1

f ,h ·n, (24)

which indicates that the scheme 21 enjoys the local mass
conservation. Summing Eq. 24 overall control volumes, we
deduce that
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∑
K∈Kh

|K|
φ

n+1
h cn+1

h −φ n
h cn

h
τ

=− ∑
K∈Kh

∑
e∈∂K

|e|cn∗
h vn+1

f ,h ·n

=−( ∑
e+∈E I

h

|e|cn∗
h vn+1

f ,h ·n+ ∑
e−∈E I

h

|e|cn∗
h vn+1

f ,h ·n)

= 0, (25)
where e+ = {e ∈ ∂K ∩ ∂K1 : vn+1

f ,h · n|e > 0,∀K,K1 ∈ Kh},
e− = {e ∈ ∂K1 ∩∂K : vn+1

f ,h ·n|e < 0,∀K,K1 ∈ Kh}.

We define the energy as follows:

En
h = ∑

e∈E I
s,h

θe

2he
⟨[un

s,h], [u
n
s,h]⟩e − ∑

e∈E I
s,h

⟨{σe(un
s,h)ne}, [un

s,h]⟩e

+ ∑
K∈Kh

∫
K

(
φ

n
h f (cn

h)+
σe(un

s,h) : ε(un
s,h)

2
+

|pn
h|2

2N

)
dx.

(26)

Theorem 4.2. Assume that 0 < ε ≤ cn
h ≤

1
β
− ε where ε is a

small constant. The stabilization parameter θ is taken as in
Theorem 3.1. The total free energy stemming from the scheme
21 follows the inequality:

Dτ En+1
h ≤− ∑

K∈Kh

∫
K

λ
−1(φ n

h )|vn+1
f ,h |2 dx ≤ 0.

Proof. Taking vh =Dτ us,h and ρh = pn+1
h in Eqs. 21a and 21e,

we have

1
2 ∑

K∈Kh

Dτ(σ e(un+1
s,h ),ε(un+1

s,h ))K

+
τ

2 ∑
K∈Kh

(σ e(Dτ un+1
s,h ),ε(Dτ un+1

s,h ))K

+
1

2N ∑
K∈Kh

Dτ(pn+1
h , pn+1

h )K +
τ

2N ∑
K∈Kh

(Dτ pn+1
h ,Dτ pn+1

h )K

+ ∑
e∈E I

h

θe

2he
Dτ⟨[un+1

s,h ], [un+1
s,h ]⟩e + ∑

e∈E I
h

θeτ

2he
⟨[Dτ un+1

s,h ], [Dτ un+1
s,h ]⟩e

− ∑
e∈E I

h

⟨{σ e(un+1
s,h )ne}, [Dτ un+1

s,h ]⟩e − ∑
K∈Kh

(Dτ φ
n+1
h , pn+1

h )K

− ∑
e∈E I

h

⟨[un+1
s,h ],

{
σ(Dτ un+1

s,h )ne

}
⟩e = 0. (27)

Combining the 7th and 8th terms of Eq. 27, we can arrive
at the ensuing equality via a simple derivation process:

⟨{σ e(un+1
s,h )ne}, [Dτ un+1

s,h ]⟩e + ⟨{σ e(Dτ un+1
s,h )ne}, [un+1

s,h ]⟩e

=
1
τ

(
⟨{σ e(un+1

s,h −un
s,h)ne}, [un+1

s,h −un
s,h]⟩e

+ ⟨{σ e(un+1
s,h )ne}, [un+1

s,h ]⟩e −⟨{σ e(un
s,h)ne}, [un

s,h]⟩e
)
. (28)

By the Cauchy-Schwarz and Young’s inequalities, we get

∑
e∈E I

h

τ⟨{σ e(Dτ un+1
s,h )ne}, [Dτ un+1

s,h ]⟩e (29)

≤ ∑
e∈E I

h

τ∥{σ e(Dτ un+1
s,h )ne}∥L2(e)∥[Dτ un+1

s,h ]∥L2(e)

≤
(

∑
e∈E I

h

τ∥{σ e(Dτ un+1
s,h )ne}∥2

L2(e)

) 1
2
(

∑
e∈E I

h

τ∥[Dτ un+1
s,h ]∥2

L2(e)

) 1
2

≤
(Cτ

2he
∑

K∈Kh

(
σ e(Dτ un+1

s,h ),ε(Dτ un+1
s,h )

)
K

) 1
2

·
(

∑
e∈E I

h

τ∥[Dτ un+1
s,h ]∥2

L2(e)

) 1
2

≤ τ

4 ∑
K∈Kh

(
σ e(Dτ un+1

s,h ),ε(Dτ un+1
s,h )

)
K

+
Cτ

2he
∑

e∈E I
h

∥[Dτ un+1
s,h ]∥2

L2(e).

This derivation employs the trace inequality (cf. [34]):

∥σe(vh)n∥2
L2(e) ≤Ch−1

e

∫
K
(σe(vh) : ε(vh))dx, ∀vh ∈ Pr (K)d ,

(30)
where Pr is the rth-order polynomial space.

Substituting Eqs. 28 and 29 into Eq. 27, we get

1
2 ∑

K∈Kh

Dτ(σ e(un+1
s,h ),ε(un+1

s,h ))K

+
τ

4 ∑
K∈Kh

(σ e(Dτ un+1
s,h ),ε(Dτ un+1

s,h ))K

+
1

2N ∑
K∈Kh

Dτ(pn+1
h , pn+1

h )K +
τ

2N ∑
K∈Kh

(Dτ pn+1
h ,Dτ pn+1

h )K

+ ∑
e∈E I

h

θe

2he
Dτ⟨[un+1

s,h ], [un+1
s,h ]⟩e

+ ∑
e∈E I

h

(θe −C)τ

2he
⟨[Dτ un+1

s,h ], [Dτ un+1
s,h ]⟩e

− ∑
e∈E I

h

⟨{σ e(un+1
s,h )ne}, [un+1

s,h ]⟩e

+ ∑
e∈E I

h

⟨{σ e(un
s,h)ne}, [un

s,h]⟩e − ∑
K∈Kh

(Dτ φ
n+1
h , pn+1

h )K

≤0. (31)
Let qh = µ

n+1
h ,wh = vn+1

f ,h and zh = φ
n+1
h −φ n

h in Eqs. 21b-
21d, we get

(
φ

n+1
h cn+1

h −φ n
h cn

h
τ

,µn+1
h )+ ∑

e∈E I
h

⟨cn∗
h vn+1

f ,h ·n,µn+1
h ⟩e = 0,

(32)
(λ−1(φ n

h )v
n+1
f ,h ,vn+1

f ,h ) = ∑
e∈E I

h

⟨µn+1
h ,cn∗

h vn+1
f ,h ·n⟩e, (33)

(pn+1
h ,φ n+1

h −φ
n
h ) = (cn

hµ
n+1
h − f (cn

h),φ
n+1
h −φ

n
h ). (34)

By Eqs. 9, 10 and 32-34, we can get the following results:

1
τ

∑
K∈Kh

∫
K

µ
n+1
h

(
φ

n+1
h cn+1

h −φ
n
h cn

h
)

dx

=− ∑
e∈E I

h

∫
e
[µn+1

h ]cn∗
h vn+1

f ,h ·n dx (35)
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=− ∑
K∈Kh

∫
K

λ
−1(φ n

h )|vn+1
f ,h |2 dx.

Due to Eqs. 31-35, we have

Dτ En+1
h ≤− ∑

K∈Kh

∫
K

λ
−1(φ n

h )|vn+1
f ,h |2 dx ≤ 0.

The proof is completed.

5. Numerical examples
This section presents a series of numerical results to

validate the theoretical findings. The gas considered here is
methane and the relevant physical data is found in Table
1. In all numerical examples, we take θ = 1. The viscosity
η = 10−5Pa · s. The two-dimensional cases are defined on the
square domain Ω = [0,L]2, where L = 100 m. A quasi-uniform
100×100 triangular mesh is used to divide the domain.

Convergence of the iterative process is controlled by the
following stopping criterion:

max

{∥∥∥cn+1,l+1
h − cn+1,l

h

∥∥∥∥∥cn
h

∥∥ ,

∥∥∥pn+1,l+1
h − pn+1,l

h

∥∥∥∥∥pn
h

∥∥ ,

∥∥∥φ
n+1,l+1
h −φ

n+1,l
h

∥∥∥∥∥φ n
h

∥∥ ,

∥∥∥un+1,l+1
s,h −un+1,l

s,h

∥∥∥∥∥∥un
s,h

∥∥∥ ,

∥∥∥vn+1,l+1
f ,h −vn+1,l

f ,h

∥∥∥∥∥∥vn
f ,h

∥∥∥
}

< ε1.

The iterative algorithm employs a convergence criterion based
on the tolerance of the relative error, ε1, which is set to
5 × 10−13 to ensure sufficiently accurate solutions in all
examples.

5.1 Example 1
To verify the effectiveness of the proposed scheme, we sim-

ulate a closed system with the molar density and permeability
initially specified as:

c0 = c0 + rand(x) · (c1 − c0) ,

k0 = k0 + rand(x) · (k1 − k0) ,

where c0 = 100 mol/m3, c1 = 300 mol/m3, k0 = 0.5 md, k1 = 2
md, and the random function rand(x) generates a real value
between 0 and 1. The reference porosity is taken as φr = 0.05.
The initial porosity φ 0 = φr. For the time discretization, the
time step size is set as τ = 36 seconds.

The results presented in Fig.1 confirm that the proposed
scheme upholds the energy decay property, the mass conser-
vation, and the molar density boundedness.

Figs. 2, 3 and 4 depict the distributions of molar density,
pressure, and chemical potential at various time instants. It
can be seen that the molar density gradually reaches the
equilibrium state driven by the chemical potential energy. Fig.
5 illustrates how porosity is influenced by pressure and solid
deformation, using the specified parameter values of N = 1010

Pa, γ = 109 Pa, and η = 2×109 Pa.

5.2 Example 2
This example demonstrates the simulation of a gas flow

problem in a reservoir with four channel zones denoted as Ωl ,
where the porosity and permeability of the channel zones are
respectively φ0 = 0.5 and κ0 = 1000 md.

Ωl = {x = (x,y) : x ∈ [0,100],y ∈ [20,22]∪ [38,40]∪ [58,60]
∪ [78,80]}.

As depicted in Fig. 6, the initial states of the porosity and
permeability are presented. In the area outside the channels,
we take the porosity as φ 0 = 0.1, and the permeability is
κ0 = 1 md. The initial porosity is treated as the reference
porosity. We take the initial molar density of the entire area
as c0 = 20 mol/m3. In this example, we aim to test an open
system, so the Dirichlet boundary conditions are applied,
with the left boundary set to c = 200 mol/m3 and the right
boundary set to c = 20 mol/m3. The time step size is set to
τ = 36 seconds.

Figs. 7, 8, and 9 present the spatial distributions of molar
density, chemical potential, and pressure at various time steps.
Since the densities are different on boundaries, there is a
gradient difference in chemical potential energy between the
left and right sides, which drives the molar density to change
the higher left-side value to the lower right-side value across
the domain. Because the permeability in the channels is larger
than that in the surrounding porous media, the density and
pressure change faster in the channels. The changes in porosity
and permeability over time are shown in Figs. 10 and 11. It
can be observed that the changes in porosity and permeability
are also more dramatic where the pressure changes drastically.

5.3 Example 3
The gas flow simulation is carried out in a three-

dimensional (3D) cubic domain Ω= [0,L]3, where the length L
of each side is 30 meters. The initial porosity and permeability
are set to φ 0 = 0.2 and κ0 = 100 md in Ωh respectively, where

Ωh = {x= (x,y,z) : 0.4L < x < 0.6L,0.4L < y < 0.6L,

0 < z < 0.8L}.
The initial porosity and permeability in the remaining subdo-
mains are φ 0 = 0.1 and κ0 = 1 md. The initial molar density
of the entire area is c0 = 50 mol/m3. We take the bottom of Ω

as the Dirichlet boundary conditions with the constant molar
density 200 mol/m3. The remaining boundaries are no-flow
boundaries. The initial porosity and molar density distributions
are presented in Fig. 12. A uniform tetrahedron mesh with
27,000 elements is used for the spatial discretization, and the
time step size is τ = 20 seconds.

Fig. 13 shows that the molar density flows into the area
from the bottom and changes more obviously in the high
permeability region. Figs. 14 and 15 show the changes of
chemical potential energy and pressure. Figs. 16 and 17 illus-
trate how the changes in pressure and solid deformation affect
porosity and permeability. The change in porosity in the high
permeability area is more obvious due to the drastic change
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(a) Total energy dissipation curves (b) The relative errors of molar density

(c) Minimum and maximum values of mo-
lar density

Fig. 1. The performance of the scheme in Example 1.

(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 2. The molar density distributions at distinct time instants in Example 1.
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Table 1. Physical properties of methane.

Pc (bar) Tc (K) Acentric factor Mw (g/mole) Temperature (K)

45.99 190.56 0.011 16.04 330

(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 3. The chemical potential distributions at distinct time instants in Example 1.

(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 4. The pressure distributions at distinct time instants in Example 1.
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(a) porosity (b) permeability

Fig. 5. The porosity and permeability distributions at the final time in Example 1.

(a) initial porosity (b) initial permeability

Fig. 6. The initial porosity and permeability distributions in Example 2.

(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 7. The molar density distributions at distinct time instants in Example 2.
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(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 8. The chemical potential distributions at distinct time instants in Example 2.

(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 9. The pressure distributions at distinct time instants in Example 2.
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(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 10. The porosity distributions at distinct time instants in Example 2.

(a) t = 0.1 hour (b) t = 0.4 hour

(c) t = 0.8 hour (d) t = 1 hour

Fig. 11. The permeability distributions at distinct time instants in Example 2.
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(a) initial permeability (b) initial porosity

Fig. 12. Initial porosity and permeability in Example 3.

(a) t = 0.1 hour (b) t = 0.3 hour

(c) t = 0.5 hour (d) t = 1 hour

Fig. 13. The molar density distributions at distinct time instants in Example 3.

in pressure. The numerical results confirm that the proposed
scheme is a viable and effective approach for simulating the
gas flow dynamics in three dimensions.

6. Conclusion
We first introduce an efficient time semi-discrete formu-

lation that employs a stabilization approach, and we subse-
quently formulate a fully discrete scheme using the mixed
finite element and discontinuous Galerkin methods with the
upwind strategy. The method ensures the energy dissipation
law and the mass conservation law. Numerical results are
presented to illustrate the efficiency of the developed numerical
scheme.
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