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Abstract:
Automatic history matching in large-scale reservoir simulations poses significant challenges
due to the complexity and uncertainty inherent in reservoir parameters. In this paper, we
introduced a deep learning-based surrogate model, termed Convolution Recurrent Neural
Network, for addressing these challenges. The Convolution Recurrent Neural Network
leverages Convolution Neural Network and Recurrent Neural Network to extract spatial
and temporal features respectively to approximate the intricate map between reservoir
parameters and production data. And then, through the Randomized Maximum Likelihood
method, the posterior distribution of reservoir parameters is sampled by optimizing a series
of perturbed objective functions. The proposed framework several advantages, including
its ability to handle high-dimensional data, capture complex reservoir dynamics, and
efficiently calibrate uncertain parameters. Through comprehensive numerical experiments
on both synthetic and real-world reservoir models, we demonstrate the efficacy of the
approach in enhancing the efficiency and accuracy of automatic history matching in large-
scale reservoir simulations.

1. Introduction
The accurate characterization of subsurface reservoirs is

fundamental to optimizing hydrocarbon recovery in the oil and
gas industry. However, achieving this accuracy is a daunting
task due to the inherent complexity and uncertainty associated
with reservoir parameters. History matching, the process of
calibrating reservoir models to observed data, plays a pivotal
role in oil and gas development.

Traditionally, history matching has been a labor-intensive
and time-consuming process, often relying on manual adjust-
ments to match simulated production data with observed field
measurements. With the increasing size and complexity of

reservoir models, there is a growing demand for automatic
history matching techniques that can efficiently handle large-
scale datasets while accounting for the inherent uncertainties
in reservoir parameters.

History matching is a typical example of an ill-posed
inverse problem, signifying that multiple parameter combina-
tions can yield satisfactory matches to replicate past reservoir
dynamics. To achieve a more comprehensive estimation of
reservoir parameters, automatic history matching is often con-
ceptualized as a sampling problem within a Bayesian frame-
work. Nowadays, the pursuit of several optimal solutions or
calibrating reservoir models to reliably assess the uncertainty
of the predictions has emerged as the ultimate objective of
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history matching (Cancelliere et al., 2011). In light of this
consideration, various history matching algorithms have been
proposed over the past decades, including ensemble-based
methods (Van Leeuwen and Evensen, 1996; Aanonsen et
al., 2009; Emerick and Reynolds, 2013; Zhang et al., 2018) and
Markov chain Monte Carlo methods (Liu and Oliver, 2003;
Emerick and Reynolds, 2010; Li and Reynolds, 2020; Yan and
Zhou, 2020). These Monte Carlo-based algorithms enable the
acquisition of posterior distributions of uncertain parameters
and provide assessments of uncertainty in posterior responses.
However, these algorithms rely on iterative updates of reservoir
parameters, necessitating extensive numerical simulations and
thereby consuming substantial computational resources. Con-
sequently, reducing the computational costs of history match-
ing is imperative for reservoir production and management.

To further enhance the efficiency of history matching while
maintaining accuracy, the integration of data-driven surrogate
models has become a promising approach (Asher et al., 2015;
Chen et al., 2023). Surrogate models, also known as proxy
models, serve as computationally efficient approximations
of complex reservoir simulators. These data-driven surrogate
models encapsulate the underlying physics of reservoir behav-
ior by probability approximation and can rapidly evaluate the
response of the reservoir to different parameter configurations.

Recently, deep learning has experienced significant ad-
vancements and has been widely applied in various scientific
and engineering domains, offering a novel approach to con-
structing alternative models for history matching. Traditional
data-driven methods, such as kriging, polynomial regression,
and k-nearest-neighbor (Hamdi et al., 2017; Wantawin et
al., 2017; Yu et al., 2018) have prediction accuracy and com-
putational efficiency limitations when facing high-dimensional
and nonlinear data. To address this issue and promote the
extensive utilization of surrogate models in history matching,
deep learning has been incorporated to construct surrogate
models. Treating the model parameters field as images, each
grid point of the parameter field corresponds to a pixel in
the image. Zhu and Zabaras (2018) used dense convolutional
encoder-decoder networks to predict fluid velocity and pres-
sure. Based on this, a training strategy combining regression
loss and segmentation loss was proposed to better approximate
the discontinuous saturation field (Mo et al., 2019). Tang
et al. (2020) employed a residual U-Net network combined
with convolutional long short-term memory recurrent networks
to construct a surrogate model, capturing the spatiotemporal
dynamics in high-dimensional nonlinear systems. Xiao et al.
(2021) modified the residual U-Net network to improve model
performance. Zhong et al. (2020) utilized a deep convolutional
generative neural network (cDC-GAN) to establish a surrogate
model, with time as a condition, model permeability field
as input, and saturation distributions as output, moreover,
production data obtained through Darcy’s law and the principle
of material balance. In image-to-image networks, production
data cannot be directly obtained, which needs to be calculated
based on the predicted pressure or saturation of the network.

In this study, we have combined Convolution Neural
Network (CNN) and Recurrent Neural Network (RNN) to
establish a surrogate model, achieving an end-to-end mapping

from reservoir parameters to production data (Wantawin et
al., 2017; Zhang et al., 2018; Ma et al., 2022a, 2022b). The
neural network-based surrogate model in this paper is built
using the open-access machine learning framework PyTorch
(Paszke et al., 2019), and its training process can be viewed
as an optimization procedure. By defining a loss function
between model predictions and labels, the neural network
parameters are gradually updated to improve prediction ac-
curacy. Automatic history matching can also be regarded as
an optimization problem. Therefore, once the neural network-
based surrogate model is established, we can freeze the neural
network parameters and directly compute the gradient of the
automatic history matching objective function with respect to
reservoir uncertain parameters using the Automatic Differen-
tiation functionality within the PyTorch framework. We then
utilize gradient descent to calibrate uncertain reservoir param-
eters. To effectively sample the posterior probability density
function of uncertain reservoir parameters, we introduce the
Randomized Maximum Likelihood (RML) (Kitanidis, 1986;
Oliver et al., 1996) sampling framework within the proposed
inversion framework, simultaneously optimizing a series of
perturbed objective functions to estimate the posterior distri-
bution of reservoir parameters.

The remaining sections of this paper are organized as fol-
lows. In section 2, we provide the fundamental theory behind
the CNN and the RNN utilized in our data-driven surrogate
model. Section 3 elaborates on the proposed Convolution Re-
current Neural Network surrogate model. Section 4 delineates
the RML method, outlining the workflow of surrogate-based
automatic history matching. Subsequently, Section 5 evaluates
the proposed workflow on both two-dimensional synthetic
reservoir models and three-dimensional large-scale reservoir
models. Finally, we discuss and summarize the experimental
results in section 6.

2. Related works

2.1 Deep residual convolution neural network
CNN play a crucial role in the field of deep learning and

are particularly suited for processing data with spatial struc-
ture, such as images, speech, and text (LeCun et al., 2015).
Generally, as the depth of the neural networks increase, the
model can extract more features and tends to perform better.
However, experiments have proved that this is not the case,
when CNN reaches a certain depth, gradient vanishing and
gradient explosion may occur if the number of network layers
continues to increase, leading to setbacks in model training
results. He et al. (2016) proposed a deep residual network,
introducing residual blocks to overcome the problems caused
by the increasing depth of the network.

The novelty of residual network is that uses shortcut
connection structure, as shown in Fig. 1, x is the input of
the neural network, F(x) donates the residual mapping to be
learned, and H(x) is expected output, the residual learning
unit takes the first two to get the output of the network,
i.e., H(x) = F(x) + x. This type of skip connection enables
an identity mapping between input and output features when
F(x) equals zero. The identity mapping directly passes the
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input information to the output, allowing the entire network to
learn only the difference between input and output, reducing
parameter computation and preserving information integrity.
Additionally, during backpropagation, the gradients of deep
networks can be efficiently transported to shallower layers
through the identity mapping, enabling the feedback of error
information to earlier layers and effectively alleviating network
degradation.

Fig. 1. The basic unit of a residual network.

2.2 Bidirectional long short-term memory unit
Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber 1997) is a variant of RNN designed to address
the issue of gradient vanishing in traditional RNN. A basic
LSTM unit structure is shown in Fig. 2, including the forget
gate ft , the input gate it , and the output gate ot . x is the input
at time t and ht−1 is the hidden state at time t-1. ct is the cell
state at time t, used to convey information.

Fig. 2. The basic unit of LSTM.

The forget gate is responsible for determining which infor-
mation to retain or discard, the input gate functions to update
crucial information, and the output gate calculates the final
output of the LSTM unit:

ft = σ(Wf · [ht−1,xt ]+b f )

it = σ(Wi · [ht−1,xt ]+bi)

ot = σ(Wo · [ht−1,xt ]+bo)

ct = ft · ct−1 + it · tanh(Wc · [ht−1,xt ]+bc)

(1)

where σ is the sigmoid activation function, Wf , Wi, Wo, Wc are
the corresponding weights, b f , bi, bo, bc are the corresponding

bias and tanh(·) is the arctangent function, xt is the input of
the LSTM at time t.

The bi-directional LSTM (BiLSTM) (Graves et al., 2013)
learns from both past and future data to overcome the lim-
itation of LSTM that can only capture information in one
direction, resulting in superior performance in time series
prediction. The BiLSTM network is composed of two LSTM
layers, one is forward, with inputs in the forward direction of
the time series, and the other layer is backward, with inputs in
the reverse time direction. The output of the BiLSTM network
is determined jointly by these two layers, as shown in Fig. 3.

Fig. 3. The architecture of BiLSTM.

Where x and y are the input and output of the BiLSTM, in
the forward layer, the first set of outputs are {z1,z2, · · · ,zk−1},
while in the backward layer, the second set of outputs are
{zk,zk−1, · · · ,z1} , and these two sets of outputs are concate-
nated to obtain the final output.

3. Proposed surrogate model
As an effective technique, reservoir numerical simulation

helps engineers understand the behavior of reservoir and
predict reservoir production, enabling more accurate decision-
making in reservoir development. In order to obtain reservoir
models that approximate the actual reservoir, it usually re-
quires hundreds of numerical simulations to update model pa-
rameters during the process of history matching. For complex
and large-scale reservoirs, however, numerical simulation is
time-consuming, leading to low computational efficiency. With
the aim of solving this problem, surrogate model is constructed
to replace the numerical simulation process.

3.1 General architecture
In numerical simulation, production data can be obtained

by giving model parameters. For the purpose of expediting
this process, surrogate model is constructed. The relationship
between the input and output of the numerical simulation
model can be described as:

F =: RH×W×Nx → RT×Nd (2)
where H ×W is the number of grids, Nx is the number of
parameter fields, T is the timesteps, and Nd is the production
data of different wells. Compared with numerical simula-
tion, surrogate model has simple structures, ease for rapid
predictions of reservoir production dynamics, and significant
improvement in computational efficiency.

The proposed surrogate model utilizes convolutional and
recurrent neural networks to establish a mapping relationship
between model parameters and production data. CNN is used
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for spatial feature extraction of model parameters and RNN is
applied to handle time-varying production data. Details about
these two parts will be provided below.

3.2 Network design for proposed model
As shown in Figs. 4 and 5, the model parameters are

input into the network and initially processed through a
convolutional layer and a max-pooling layer, then, they are
passed through a series of operations involving residual blocks
and max-pooling layers in an alternating fashion to extract
spatial features, finally, the feature vector z is obtained through
a fully-connected layer. In the RNN module, the spatial
feature vectors z are fed into the first BiLSTM layer, which
produces the hidden state h. The hidden state h then flows
into the second BiLSTM layer to generate the final output y,
representing the production data at different time steps.

3.3 Loss function and training procedure
An appropriate loss function can help models make ac-

curate predictions. In the proposed surrogate model, we use
Mean Absolute Error function as the loss function, which mea-
sures the average absolute difference between the predicted
results and the actual values:

MAE =
∑

n
i=1 |ysim

i −ypre
i |

n
(3)

where ysim
i is the simulation data of ith sample, ypre

i is the
model prediction data of ith sample.

The entire training process is conducted in the Pytorch
framework, and the training runs for 200 epochs. Adam
algorithm (Kingma and Ba, 2014), as the optimizer, is utilized
to update the model parameters based on the back-propagation
method. The initial learning rate is set as 0.001 and then
divided by 10 when the loss of the validation set stagnates.

4. Automatic history matching workflow with
surrogate-based RML

4.1 Parameterization of uncertain parameters
using principal component analysis

The significant uncertainty associated with large-scale
reservoir parameters poses a crucial challenge for automatic
history matching. With numerous geological and fluid prop-
erties involved, high-dimensional reservoir parameters consti-
tute a complex multidimensional space. Within these high-
dimensional parameters, redundant and correlated features
often exist, presenting significant obstacles to the solution of
automatic history matching. Consequently, compressing high-
dimensional reservoir parameters into a lower-dimensional
space for calibration becomes essential.

In the field of automatic history matching, commonly
used parameter reduction techniques, also referred to as pa-
rameterization, include Principal Component Analysis (PCA)
(Reynolds et al., 1996; Sarma et al., 2006), Discrete Wavelet
Transform (Lu and Horne, 2000), and Discrete Cosine Trans-
form (Jafarpour et al., 2010). Among these, PCA stands out
as a prevalent dimensionality reduction method, demonstrating

versatile advantages in handling high-dimensional data. PCA
can effectively captures the primary trends of the data, by
mapping it onto a new coordinate system where the variance
of the data is maximized.

The first step in performing the PCA procedure is to gen-
erate a set of geological realizations. Then the Nr realizations
need to be assembled into a centered data matrix:

Y = [m1 − m̄ m2 − m̄ · · ·mNr − m̄] (4)
where Y ∈ RNm×Nr , mi denotes the ith realization, and m̄
is the mean of all Nr realizations. Then the singular-value
decomposition is performed for Y/

√
Nr −1, which obtains:

Y =
√

Nr −1UΣVT =
√

Nr −1ΦVT = ΦP (5)
where U and V are the Nm ×Nm and Nr ×Nr unitary matrices
respectively, Σ is a Nm ×Nr diagonal matrix, whose diagonal
components are nonnegative singular values, Φ is a Nm ×Nr
basis matrix, and P is Nr ×Nr a matrix whose column vectors
are subject to standard normal distribution. Based on the
energy criterion, the largest Nl(Nl < Nr − 1) singular values
are chosen to realize parameter dimension reduction and noise
elimination. Then the new PCA realizations can be represented
as:

m(ξ )≈ Φlξ + m̄ (6)
where Φl is a Nm × Nl matrix, whose columns come from
first the Nl columns of Φ, and ξ ∈ RNl×1 is the reduced-space
variable subject to a standard normal distribution.

4.2 Randomized maximum likelihood method
The objective function of automatic history matching is

usually constructed based on a Bayesian framework, which
can be expressed as can be expressed:

O(m) = argmin
m

[(G(m)−dobs)
T C−1

D (G(m)−dobs)

+(m−mp)
T C−1

m (m−mp)]
(7)

where G(·) represents the numerical simulation, dobs repre-
sents the observation data, CD is a diagonal matrix to measure
the observed error, mp and Cm are the mean and covariance
of the prior model parameters.

The objective function consists of a prior probability den-
sity function and a data likelihood, i.e., model mismatch term
and data mismatch term. The model mismatch term serves as
a regularization mechanism to prevent history matching solu-
tions from deviating significantly from geological knowledge.
The data mismatch term is to minimize the difference between
simulated data and observed data.

History matching is an ill-posed inverse problem character-
ized by the presence of multiple solutions; hence, optimizing
a single objective function is insufficient. An ideal history
matching solution should estimate the posterior distribution of
reservoir parameters. To achieve this, we introduce the RML
method, which attempts to sample the posterior distribution
by optimizing a series of independent perturbed objective
functions. The RML method can sample a reasonable posterior
probability density function when the responses are nonlin-
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Fig. 4. Architecture of the residual convolutional network.

Fig. 5. Architecture of the bi-directional LSTM.

early related to the model parameters. Oliver et al. (2008)
gives a concise RML process when hypothesizing that the
model parameters m and observations noise are Gaussian. The
process is as follows:

1) Sample m∗ from the prior model Gaussian distribution.
2) Sample perturbed observations d∗obs from the Gaussian

distribution N[dobs,CD].
3) Implement maximum likelihood estimation to obtain pos-

terior variables mrml by

mrml = argmin
m

[(G(m)−d∗obs)
T C−1

D (G(m)−d∗obs)

+(m−m∗)T C−1
m (m−m∗)]

(8)

4) Repeat steps 1–3 to generate a set of posterior variables
mrml .

Based on the PCA method, the relation between latent
variable ξ and observations dobs can be approximated as
dobs = G(Φlξ + m̄)+m+ ε , where ξ follows a multivariate
standard normal distribution, ε represents the observation
noise. Therefore, the process of the RML method can be
simplified as:

1) Sample ξ ∗ from the prior model Gaussian distribution
N[0,I].

2) Sample perturbed observations from the Gaussian distri-
bution N[dobs,CD].

3) Implement maximum likelihood estimation to obtain pos-
terior variables ξrml by

ξrml = argmin
ξ

[(G(m(ξ ))−d∗obs)
T C−1

D (G(m(ξ ))−d∗obs)

+(ξ −ξ
∗)T (ξ −ξ

∗)]
(9)

4) Repeat steps 1–3 to generate a set of posterior variables
ξrml .

4.3 The automatic history matching workflow
Implementing reservoir simulation as an end-to-end surro-

gate model based on neural networks implies that the input
reservoir model can be viewed as variables to be updated. In
other words, leveraging neural networks to update the network
parameters to fit the reservoir production data, then fixing
these parameters to calibrate the input variables to match the
observed data. Integrating the PCA and RML, the loss function
of the automatic history matching is as follows:

O(ξ ) =
1
2
[(F(m(ξ ))−d∗obs)

T C−1
D (F(m(ξ ))−d∗obs)

+(ξ −ξ
∗)T (ξ −ξ

∗)]
(10)

where F(·) represents the forward propagation of the neural
network, and d∗obs denotes the perturbed observations.

Above process entails transforming the complex relation-
ships within reservoir systems into trainable parameters within
the neural network architecture. These parameters are itera-
tively adjusted during the training process to minimize the mis-
match between surrogate model predicted and observed data,
ultimately capturing the dynamic behavior of the reservoir.

Through gradient backpropagation algorithms, we can ef-
fectively calibrate a set of uncertain parameters. The calibra-
tion of uncertain parameters is performed using the Adam
algorithm integrated with damping strategy. Due to the fact
that optimization based on surrogate model does not require
running computationally time-consuming numerical simula-
tions, optimization does not limit the maximum number of
iterations and terminates when the relative rate of change of
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the data loss term is less than 0.01.

5. Case study
In this section, we validated the effectiveness of the pro-

posed automatic history matching framework on two cases of
waterflooding reservoirs. For each instance, we first evaluate
the predictive performance of the surrogate model on produc-
tion data, and then calibrate the uncertain parameters of the
reservoir based on the surrogate model.

5.1 Case 1: Heterogeneous waterflooding 2D
reservoir model

The first case is a synthetic reservoir model with 60×60×1
grid blocks, and each block represents 20m×20m×4m. The
porosity value is set to a constant of 0.2. We generate 2,000
prior permeability fields using Stanford Geostatistical Model-
ing Software (Remy et al., 2009), then perform simulations
on these models to obtain corresponding production data.
Among them, 1,400 models are used as the training set, 200
models are used as the validation set, and 400 models are
used as the testing set. A model with the same geological
description as the prior model but not included in the prior
models is generated as the reference model. The reference log-
permeability field is shown in Fig. 6. There are 9 production
wells and 4 water injection wells, and all wells are controlled
by bottom-hole pressure. In this case, the whole production
period is 1,500 days and the interval for each time step is 30
days. The prediction objective of the surrogate model is the
well oil production rate (WOPR) and the well water production
rate (WWPR) of the 1,500 days production period.

Fig. 6. Reference reservoir model: Case 1.

5.1.1 Prediction accuracy assessment

In this section, we mainly assess the performance of the
proposed Convolution Recurrent Neural Network surrogate
model for production data prediction. We use six different
sample sizes (Ntrain=400, 600, 800, 1,000, 1,200, 1,400) to
train the model and explore the impact of training sample
size on prediction accuracy. The training epochs and training
batches are set as 100 and 16, respectively. As mentioned
earlier, the remaining 400 prior models are used as the testing
set to evaluate the performance of the surrogate model. We
select two commonly used performance metrics, the coefficient
of determination (R2) and the root-mean-square error (RMSE),
for predictive performance evaluation. The formulas of the
metrics are shown in Eqs. (11)-(12):

R2 = 1− ∑
Ntest
i=1 ∥yi − ŷi∥2

2

∑
Ntest
i=1 ∥yi − ȳi∥2

2

(11)

and

RMSE =

√√√√ 1
Ntest

Ntest

∑
i=1

∥yi − ŷi∥2
2 (12)

Respectively, where yi denote the numerical simulation results,
ŷi denote the surrogate model predictions, ȳ is the mean of the
simulation results. The closer R2 is to 1 and the lower RMSE
value means the better surrogate quality.

Fig. 7. Comparison of the evaluation results of the surrogate
models on the test samples with different numbers of training
samples.

Fig. 7 displays the evaluation results of RMSE and R2 for
test samples with different six training samples. The results
indicate that with an increase in the number of training
samples, the predictive accuracy of the surrogate model also
improves. However, beyond a certain threshold of training
samples, the marginal improvement in predictive accuracy
diminishes significantly. At this point, further increasing the
number of training samples yields diminishing returns, as
the configuration of training samples itself requires extensive
computational time for numerical simulations. Judging from
both the RMSE and R2 evaluation metrics, the inflection
point for the predictive accuracy of the surrogate model
is approximately between 800 and 1,200 training samples.
Based on this observation, it can be roughly inferred that
for the surrogate model proposed in this paper, the optimal
number of training samples that balances predictive accuracy
and computational costs lies between 800 and 1,200. In this
particular case, we employ the surrogate model obtained from
1,000 training samples for automated history matching.

In order to provide a more intuitive demonstration of the
predictive performance of the surrogate model, we concur-
rently present numerical simulation results of a randomly
selected test case alongside the surrogate model predictions
for evaluating the predictive quality of the surrogate model,
as shown in Fig. 8. It can be observed that the surrogate
model predictions for WOPR and WWPR closely match the
numerical simulation results. These results indicate that the
surrogate model proposed in this study can capture the intricate
mapping relationship between heterogeneous reservoirs and
production data.
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Fig. 8. Comparison of well rates from the numerical simulator
and surrogate model.

Fig. 9. Four posterior log-permeability fields obtained from
the surrogate-based RML method: Case 1.

Fig. 10. Four posterior log-permeability fields obtained from
the simulation-based RML method: Case 1.

5.1.2 History matching results

In this section, the surrogate model trained by 1,000 sam-
ples is used to replace the simulation in the history matching
process, and the 50 time-steps (1,500 days) observations as
historical data to be fit. As this study involves a synthetic
model, we generated observed data by adding Gaussian noise
with zero mean to the data simulated from the reference
model. The standard deviation of the noise equals 5% of the
“true” data. Upon completion of surrogate model training,
we obtain explicit mathematical expressions mapping reser-
voir parameters to production data. Subsequently, with the
surrogate model parameters fixed, and leveraging Pytorch’s
automatic differentiation functionality, we employ gradient-
based optimization algorithms to update reservoir parameters.
This approach efficiently optimized a series of perturbed
objective functions within the RML framework to acquire
the posterior distribution of reservoir parameters. The specific
configuration for optimizing hyperparameters is detailed in
Section 4.3.

Furthermore, for comparative purposes with the surrogate
model-based RML sampling framework, we employ the Si-
multaneous Perturbation Stochastic Approximation algorithm
based on numerical simulations to optimize the objective
functions within the RML sampling framework. The hyper-
parameters for the Simultaneous Perturbation Stochastic Ap-
proximation algorithm are set as follows: initial learning rate
of 2.5, initial perturbation step size of 0.05, and a maximum

iteration step of 50. During each gradient estimation step, Si-
multaneous Perturbation Stochastic Approximation utilize five
perturbation samples to calculate the corresponding estimated
gradients differentially, followed by averaging to obtain the
final gradient.

In this case, we perform dimension reduction based on
100 prior models. Utilizing the PCA method and setting the
cumulative energy loss to 0.01, we reduce the dimensionality
of the logarithmic permeability to 92. For both the surrogate-
based RML method and the simulation-based RML method,
we individually optimize 100 perturbed objective functions,
ultimately yielding approximations of the posterior distribution
of reservoir models by 100 posterior models.

Fig. 9 shows four posterior log-permeability fields obtained
from the surrogate-based RML method. For comparison, Fig.
10 shows the posterior log-permeability fields obtained by
the simulation-based RML method. Both methods basically
capture the high-permeability and low-permeability regions of
the reference model. In addition, the posterior models obtained
by both methods still retain a certain uncertainty and have not
occurred ensemble collapse phenomenon.

To further evaluate the inversion performance, we conduct
numerical simulations using the posterior models obtained
from both methods, as depicted in Figs. 11 and 12, respec-
tively. Figs. 11 and 12 also present the production data from
the reference model and the prior models for comparison. The
total historical production period in this case spans 1,500 days,
and compared to the simulation data from the prior models, the
results of posterior models significantly reduce the uncertainty
range. And both methods effectively fit the observed data.

Finally, we compare the computational efficiency of the
surrogate-based RML method and the simulation-based RML
method. The computational cost of the surrogate-based RML
method primarily includes numerical simulations, surrogate
model training, and numerical simulations of 100 posterior
models. The training time of the surrogate model is approxi-
mately 5 minutes, with a total of 2,100 numerical simulation
runs. In contrast, simulation-based RML method requires
nearly 20,000 runs. It is evident that by introducing the
surrogate model, computational resource consumption can be
significantly reduced, which is highly advantageous for ad-
dressing the high-dimensional and computationally expensive
sampling problem in automatic history matching.

5.2 Case 2: Heterogeneous waterflooding 3D
reservoir model

In this case, a 3D reservoir model is used to estimate the
proposed surrogate model. This model consists of 295,515
(135×199×11) grid cells. This model includes 50 prior models
with different permeability fields. The reference permeability
field is depicted in Fig. 13. In this case, the whole production
period is 16 years and the interval for each time step is 30
days. The prediction objective of the surrogate model is the
WOPR and WWPR.
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Fig. 11. Matching results of the posterior models obtained by surrogate-based RML method.

Fig. 12. Matching results of the posterior models obtained by simulation-based RML method.

Fig. 13. Permeability of a random prior reservoir model: Case
2.

5.2.1 Prediction accuracy assessment

The case comprises a total of 50 prior models, and we
utilize the PCA algorithm to reduce the dimensionality of
the prior models, retaining 99% of the relative energy and
reducing the parameters to 48 dimensions. Subsequently, we
sample within the reduced-dimensional space to supplement

insufficient samples. Given the large scale of this model, the
runtime for a single numerical simulation is approximately 30
minutes.

Therefore, in this section, we sample only 1,000 models
within the reduced-dimensional space, with 800 models allo-
cated for the training set, 100 models for the validation set, and
100 models for the test set. The training epochs and batches
for the surrogate model in this section were set to 100 and 16,
respectively, with a training time of approximately 10 minutes.
The surrogate model achieves an RMSE of 0.15656 and an R2

value of 0.84824 on the test set.

5.2.2 History matching results

The proposed surrogate model trained by 800 samples
is used to replace the simulation in the history matching
process. We use the surrogate-based RML to optimize latent
variables and finally obtain 100 posterior models. Fig. 14
present the mean and standard deviation of the permeability
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Fig. 14. Posterior log-permeability fields obtained from the surrogate-based RML method: Case 2.

Fig. 15. Prior log-permeability fields: Case 2.

field in the second layer of the posterior models obtained using
the surrogate-based RML method, as well as four randomly
selected posterior permeability fields. For comparison with
the posterior models, Fig. 15 depicts the mean and standard
deviation of the permeability field in the second layer of
the prior models, along with four randomly selected prior
permeability fields. From an individual model perspective,
the variation in permeability is not significant, and many
characteristics of the prior model are preserved in the posterior
model. In terms of the average permeability of the models, the
prior model appears smoother than the posterior model, as the
calibrated model highlights certain key features. Comparing
the permeability standard deviations of the prior and posterior
models, the standard deviation of permeability in the poste-
rior model is significantly reduced compared to that in the
prior model, with the reduction in uncertainty predominantly
concentrated near the production and injection wells in the
southern region. Additionally, it is evident that the posterior
model still retains some level of uncertainty, indicating that the
surrogate-based RML method has not experienced ensemble
collapse and has produced a reasonable inversion result.

We simulate the posterior models obtained from the
surrogate-based RML. To further illustrate the accuracy of the
posterior reservoir models, we present the fitting results of
daily oil and water production rates for selected wells and the

entire reservoir, as shown in Fig. 16. Due to confidentiality
requirements, the production data in this figure have been
scaled. It is evident that the history matching results are
highly successful, with each well exhibiting good agreement
with the observed data while retaining a certain level of
uncertainty. This indicates that the automatic history matching
framework proposed in this study remains highly effective for
large-scale reservoirs. Given the lengthy runtime of individual
numerical simulations in this case, substituting numerical
simulation processes with surrogate models will significantly
enhance the efficiency of automatic history matching. This
is highly beneficial for real-time decision-making in reservoir
production management.

6. Conclusions
In this study, we introduced a novel approach, termed Con-

volution Recurrent Neural Network Surrogate Model-based
Randomized Maximum Likelihood, for large-scale reservoir
automatic history matching. Leveraging the flexibility and
power of deep learning surrogate models within the framework
of randomized maximum likelihood, our approach offers an
efficient and accurate solution to the challenging problem
of history matching in complex reservoir systems. Through
extensive experimentation and analysis, we demonstrated the
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Fig. 16. Matching results of the posterior models obtained by surrogate-based RML method.

effectiveness of our approach in capturing the complex map-
ping relationship between heterogeneous reservoirs and pro-
duction data. Furthermore, by employing surrogate models,
we achieved substantial improvements in computational effi-
ciency without sacrificing accuracy, thereby facilitating real-
time decision-making in reservoir production management. In
conclusion, the framework presented in this paper offers a
powerful and practical solution for automatic history matching
in large-scale reservoir systems. This approach is beneficial
for reservoir management practices and contributes to more
efficient and sustainable hydrocarbon recovery operations in
the future.
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