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Abstract:
This paper presents rate transient analysis of multiple wells system producing at constant
bottomhole pressures during boundary-dominated flow period in a closed rectangular
reservoir. The proposed algorithm is based on an analytical model with numerical approxi-
mation, and production decline is predicted through a series of mathematical methods such
as the Laplace transform, the Dirac Delta function, convolution, the Green’s function and
the superposition principle. The proposed model is validated by the Computer Modeling
Group (CMG) simulation, the results show that the proposed model is accurate enough
to predict the production performance of multi-well system producing under constant
bottomhole pressures during boundary-dominated flow period in a closed rectangular
reservoir. We conclude that at a given time, the flow rate of a well decreases as the
total number of wells increases and the bottomhole pressures of adjacent wells decrease,
while the total reservoir production increases as the bottomhole pressures of reservoir
wells decreases. And at a given time, the greater distance between the observation well
and adjacent wells, the larger the flow rate and cumulative production the observation
well. In terms of the decline rate of the flow rate, it depends on the number of wells, the
bottomhole pressures of adjacent wells, and the size of reservoir. The conventional models
presented in the literature are mostly empirical or semi-analytical, which are not grounded
in fundamental theory. Our proposed model has a solid theoretical basis, it provides a
computationally efficient, accurate and convenient method for predicting transient flow
rates of multiple wells producing at constant bottomhole pressures in a closed rectangular
reservoir.

1. Introduction
The conventional well testing method assumes a well is

producing at a constant flow rate, which is difficult to maintain
for a long time. And actually, it is not uncommon that a
well produces under constant bottomhole pressure. Conditions
under which constant pressure is maintained include steam
production into a back-pressured turbine, production in a tight
reservoir (Hu et al., 2012) or open flow to the atmosphere.
Rate-time decline-curve analysis is the technique most exten-
sively used by engineers in the evaluation of well performance
and production forecasting when wells are produced at con-
stant bottomhole pressures.

In most cases, production decline analysis methods are
based on the Arps empirical models (Arps, 1945). Later

on, Fetkovich (1973) proposed type curves of transient flow
through developing the connection between the material bal-
ance and the pseudo-steady state inflow equation. Fetkovich
developed a series of new type-curves, which made the Arps
empirical model effective in transient flow period. Ehlig-
Economides and Ramey (1981) presented a general solution
of a well under constant bottomhole pressure and practical
methods to transient flow rate analysis under constant pressure.
The flow rate response to a step change in producing pressure
allows type-curve analysis without considering the compli-
cated wellbore storage effect. Blasingame and Lee (1986) and
Palacio and Blasingame (1993) developed production decline
methods that account for variations in bottomhole flowing
pressure in both transient regime and boundary-dominated
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flow regime. The Normalized Pressure Integral (NPI) was
initially developed by Blasingame et al. (1989). The NPI
provides an analysis method that is based on pressure, rather
than rate, and the main purpose is to present an analysis that
is similar to a well test analysis. Agarwal et al. (1998) have
complied and presented new decline type-curves based upon
the work of both Fetkovich and Palacio–Blasingame, utilizing
the concepts of the equivalence between constant rate and
constant pressure solutions.

Traditional decline methods such as Arps’ rate-time re-
lations and their variations do not work for tight or shale
gas wells where fracture flow is dominant. Duong (2010)
presented a new empirical model for predicting the future rate
of fracture-dominated shale reservoirs. Ezabadi et al. (2017)
presented an integrated workflow for production data analysis
and successfully applied on different cases of highly hetero-
geneous conventional gas reservoirs with huge complexities.
Anderson et al. (2018) showed the “health” of a producing
well could be measured of in terms of how much productivity
loss has occurred (or is expected to occur in the future). Jha et
al. (2021) presented a mathematical analysis of how incorrect
estimates of initial reservoir pressure may affect rate-transient
analysis in ultra-low permeability reservoirs.

The production performance of multiple wells system has
received attention in the last two decades. Valko et al. (2000)
presented pseudo-steady state productivity index for multiple
wells producing from a closed rectangular reservoir. Um-
nuayponwiwat et al. (2000) presented equations of inflow
performance of multiple vertical and horizontal wells in closed
systems. Marhaendrajana and Blasingame (2001) presented
a solution and associated analysis methodology to evaluate
single well performance behavior in a multiple wells reservoir
system.

The above conventional models presented in the literature
are mostly empirical and not grounded in fundamental theory.
Additionally, most models are developed on the basis of
constant flow rate production. Lu et al. (2018) challenged
the above conventional models and provided new solutions
to the transient rate equation of a vertical well producing at
constant bottomhole pressure in a closed circular reservoir.
Lu et al. (2019) proposed a mathematical model for pro-
duction performance of multiple wells producing at constant
bottomhole pressures in a rectangular reservoir, but their
proposed algorithm involves double infinite summation, which
has huge computation, low efficiency and low precision. The
mathematical models offered by Lu et al. (2019) for multiple
wells are the precursors for this work.

This paper provides a computationally efficient, accurate
and convenient method for predicting transient flow rates of
multiple wells producing at constant bottomhole pressures
in a closed rectangular reservoir. Analytical solutions with
simple procedures are given to forecast the production decline
of multiple wells system, the effects of the well production
starting time, the number of wells, the well location, the
reservoir size, and the distance between wells on transient flow
rates are studied.

2. Analytical model

2.1 Basic assumptions
The basic assumptions are shown as follows:

• The reservoir has a closed boxed drainage domain with
constant thickness, porosity, and permeability. Also the
porous volume is bounded by lateral, top, and bottom
closed boundaries.

• Initially, the reservoir has constant pressure and it is
above the bubble point pressure during the field life.
The transient pressure has transmitted to lateral reservoir
boundary.

• No water or gas injection into the reservoir. The multiple
wells are represented by uniform line sinks in the model
which are located at any place in the box-shaped reservoir.

• The fluid is a single-phase liquid, with slight compress-
ibility, constant viscosity, and formation volume factor.
Also, we neglect the effect of pressure on fluid properties
and gravity forces.

2.2 Governing equation, initial and boundary
conditions.

The reservoir domain is a rectangular parallelepiped with
length a, width b and height h, which can be expressed below:

Ω = (0,a)× (0,b)× (0,h) (1)
All the wells are fully penetrating, thus we may investigate

the production performance in two-dimensional space.
Assume that there are two groups of producing wells in

the reservoir. The wells in the first group are produced at
constant but different wellbore pressures, well i is located
at (xp,i,yp,i), i = 1,2, ...,N. Well i begins to produce at time
tp,i, and 0 ≤ tp,1 ≤ tp,2 ≤ ... ≤ tp,N−1 ≤ tp,N . The wells in the
second group are produced at constant but different flow rates,
well j is located at (x f , j,y f , j), j = 1,2, ...,M. Well j begins
to produce at time t f , j, and

0 ≤ t f ,1 ≤ t f ,2 ≤ ...≤ t f ,M−1 ≤ t f ,M

We can obtain the governing equation for a multiple-wells
system by superposition principle (Lee et al., 2003; Lu et
al., 2019):

∂ 2P
∂x2 +

∂ 2P
∂y2 =

(
φ µCt

K

)
∂P
∂ t

+

(
µB
Kh

) M

∑
j=1

ε(t − t f , j)q f , jδ (x− x f , j)δ (y− y f , j)

+

(
µB
Kh

) N

∑
i=1

ε(t − tp,i)qp,i(t)δ (x− xp,i)δ (y− yp,i)s

(2)

where P is pressure in the reservoir, qp,i(t) is the transient flow
rate of the well i in the first group at time t, q f , j is the constant
flow rate of the well j in the second group, φ is porosity, µ is
viscosity, h is payzone thickness, K is permeability; Ct is the
total reservoir compressibility, B is formation volume factor,
and
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ε(t − tp,i) =

{
1, if t ≥ tp,i

0, if t < tp,i
, ε(t − t f , j) =

{
1, if t ≥ t f , j

0, if t < t f , j

Note that, the reservoir has constant initial pressure every-
where:

P(t,x,y)
∣∣∣
t=0

= Pini (3)

All the reservoir boundaries are impermeable:

∂P
∂x

∣∣∣
x=0,a

=
∂P
∂y

∣∣∣
y=0,b

=
∂P
∂ z

∣∣∣
z=0,h

= 0 (4)

The wells in the first group are produced at constant but
different flowing bottomhole pressures:

P(t,xp,i,yp,i) = Pwp,i, (i = 1,2, · · · ,N) (5)
The wells in the second group are produced at constant but

different flow rates:

q(t,x f , j,y f , j) = q f , j, ( j = 1,2, · · · ,M) (6)

2.3 Dimensionless transformation
To simplify the governing equation, we define the follow-

ing dimensionless groups (Lu et al., 2018):

XD =
X
h
, YD =

Y
h
, hD =

h
h
= 1 (7)

tD =
Kt

φ µCth2 (8)

PD =
2πKh(Pini −P)

µBqref
(9)

qpD,i(tD) =
2πqp,i(t)

qref
, q f D, j =

2πq f , j

qref
(10)

where Pini is initial reservoir pressure, qref is the reference flow
rate.

Consequently, the governing equation can be denoted as
follows:

∂PD

∂ tD
−
(

∂ 2PD

∂X2
D

+
∂ 2PD

∂Y 2
D

)
=

N

∑
i=1

ε(tD − tpD,i)qpD,i(tD)δ (XD −XpD,i)δ (YD −YpD,i)

+
M

∑
j=1

ε(tD − t f D, j)q f D, jδ (XD −X f D, j)δ (YD −Yf D, j)

(11)

And then, the dimensionless boundary conditions, initial
condition, dimensionless wellbore pressure and flow rate can
be expressed as follows:

∂PD

∂XD

∣∣∣
x=0,aD

=
∂PD

∂YD

∣∣∣
y=0,bD

=
∂PD

∂ZD

∣∣∣
z=0,hD

= 0 (12)

PD(xD,yD)
∣∣∣
tD=0

= 0 (13)

PD(tD,XpD,i,YpD,i) = PwpD,i, (i = 1,2, · · · ,N) (14)
qD(tD,X f D, j,Yf D, j) = q f D, j, ( j = 1,2, · · · ,M) (15)

2.4 Laplace transform
In order to solve equations in the real space, it’s quite

convenient to process the equation in the Laplace transform
space. Considering the initial condition Eq. (13), taking the
Laplace transform with respect to tD at the both sides of Eq.
(11), we obtain (Tuma, 1971; Lu et al., 2018)

sP̂D −
(

∂ 2P̂D

∂x2
D

+
∂ 2P̂D

∂y2
D

)
=

N

∑
i=1

exp(−stpD,i) q̂pD,i(s)δ (xD − xpD,i)δ (yD − ypD,i)

+
M

∑
j=1

exp
(
−st f D, j

)(q f D, j

s

)
δ (xD − x f D, j)δ (yD − y f D, j)

(16)
Through the superposition principle (Lee et al., 2003; Lu

et al., 2012), we can easily obtain the solution of Eq. (16) as
below:

P̂D(s,xD,yD)

=
N

∑
i=1

exp(−stpD,i)q̂pD,i(s)G(s,xD,yD;xpD,i,ypD,i)

+
M

∑
j=1

exp(−st f D, j)
(q f D, j

s

)
G(s,xD,yD;x f D, j,y f D, j) (17)

where (Myint-U and Debnath, 2007; Cole et al., 2010)

G(s,xD,yD;xpD,i,ypD,i) =
∞

∑
u=0

∞

∑
v=0

cos
(

uπxD
aD

)
cos

(
vπyD

bD

)
cos

(
uπxpD,i

aD

)
cos

(
vπypD,i

bD

)
(aDbDdudv)(s+λuv)

(18)
G(s,xD,yD;x f D, j,y f D, j) =

∞

∑
u=0

∞

∑
v=0

cos
(

uπxD
aD

)
cos

(
vπyD

bD

)
cos

(
uπx f D, j

aD

)
cos

(
vπy f D, j

bD

)
(aDbDdudv)(s+λuv)

(19)

du =

{
1, if u = 0
1
2 , if u > 0

dv =

{
1, if v = 0
1
2 , if v > 0

(20)

λuv =

(
uπ

aD

)2

+

(
vπ

bD

)2

(21)

Note that the flowing bottomhole pressure of each well
in the first group is constant, then in Eq. (17), we let
(XD,YD) = (XpD,k,YpD,k),k = 1,2, . . . ,N, there holds:

PwpD,k

s
−

M

∑
j=1

q f D, j

s
G(s,xpD,k,ypD,k;x f D, j,y f D, j)exp(−st f D, j)

=
N

∑
i=1

q̂pD,i(s)G(s,xpD,k,ypD,k;xpD,i,ypD,i)exp(−stpD,i) (22)

or expressed in the matrix form (Zwillinger, 1996):

⃗̂PwD = ⃗̂G⃗̂qD (23)
where



Lu, J., et al. Computational Energy Science, 2024, 1(3): 150-163 153

⃗̂PwD =

PwpD,1
s −

M
∑
j=1

q f D, j
s G(s,xpD,1,ypD,1;x f D, j,y f D, j)exp(−st f D, j)

PwpD,2
s −

M
∑
j=1

q f D, j
s G(s,xpD,2,ypD,2;x f D, j,y f D, j)exp(−st f D, j)

...
PwpD,N

s −
M
∑
j=1

q f D, j
s G(s,xpD,N ,ypD,N ;x f D, j,y f D, j)exp(−st f D, j)


(24)

⃗̂qD(s) =



exp(−stpD,1)q̂pD,1(s)

exp(−stpD,2)q̂pD,2(s)
...

exp(−stpD,N)q̂pD,N(s)


(25)

and

⃗̂G =


Ĝ11 · · · Ĝ1N

...
. . .

...

ĜN1 · · · ĜNN

 (26)

where 
Ĝ11 = G11(s,xpD,1,ypD,1;xpD,1,ypD,1)

Ĝ1N = G1N(s,xpD,1,ypD,1;xpD,N ,ypD,N)

ĜN1 = GN1(s,xpD,N ,ypD,N ;xpD,1,ypD,1)

ĜNN = GNN(s,xpD,N ,ypD,N ;xpD,N ,ypD,N)

G(s,xpD,m,ypD,m;xpD,n,ypD,n) =
∞

∑
u=0

∞

∑
v=0

cos
(

uπxpD,m
aD

)
cos

(
vπypD,m

bD

)
cos

(
uπxpD,n

aD

)
cos

(
vπypD,n

bD

)
(aDbDdudv)(s+λuv)

(27)
and m,n = 1,2,3, . . . ,N.

In Eq. (24), we have:

G(s,xpD,i,ypD,i;xpD, j,ypD, j) =
∞

∑
u=0

∞

∑
v=0

cos
(

uπxpD,i
aD

)
cos

(
vπypD,i

bD

)
cos

(
uπxpD, j

aD

)
cos

(
vπypD, j

bD

)
(aDbDdudv)(s+λuv)

(28)
where i = 1,2,3, . . . ,N, j = 1,2,3, . . . ,M.

Note that:

G(s,xpD,m,ypD,m;xpD,n,ypD,n)

=

∞

∑
u=0

cos
(

uπxpD,m
aD

)
cos

(
uπxpD,n

aD

)
(2aDduωu)sinh(ωubD)

×
{

cosh[ωu(bD −|ypD,m − ypD,n|)]
+cosh[ωu(bD − (ypD,m + ypD,n))]

}
(29)

and

ωu =

[
s+

(
uπ

aD

)2
]1/2

(30)

If m = n, then at the wellbore of well m, there holds:

G(s,xpD,m,ypD,m;xpD,m,ypD,m) =
∞

∑
u=0

[
cos

(
uπxpD,m

aD

)]2

×
{

cosh[ωu(bD − rwpD,m)]+ cosh[ωu(bD −2ypD,m)]
}

(2aDduωu)sinh(ωubD)
(31)

and m = 1,2,3, . . . ,N,rwpD,m is the dimensionless wellbore
radius of well m which is produced at constant flowing
bottomhole pressure PwpD,m. We have:

G(s,xpD,i,ypD,i;xpD, j,ypD, j) =

∞

∑
u=0

cos
(

uπxpD,i
aD

)
cos

(
uπxpD, j

aD

)
(2aDduωu)sinh(ωubD)

×
{

cosh[ωu(bD −|ypD,i − ypD, j|)]
+cosh[ωu(bD − (ypD,i + ypD, j)]

}
(32)

where i = 1,2,3, . . . ,N, j = 1,2,3, . . . ,M.

2.5 Semi-analytical solution
According to Eqs. (24), (25) and (26), the dimensionless

flow rates in the Laplace transform space can be expressed
below:

⃗̂qD =
(
⃗̂G
)−1

× ⃗̂PwD (33)

⃗̂qD =
(
⃗̂G
)−1

×

PwpD,1
s −

M
∑
j=1

q f D, j
s G(s,xpD,1,ypD,1;x f D, j,y f D, j)exp(−st f D, j)

PwpD,2
s −

M
∑
j=1

q f D, j
s G(s,xpD,2,ypD,2;x f D, j,y f D, j)exp(−st f D, j)

...
PwpD,N

s −
M
∑
j=1

q f D, j
s G(s,xpD,N ,ypD,N ;x f D, j,y f D, j)exp(−st f D, j)


(34)

The dimensionless cumulative production of well k in
the second group which is produced at constant flowing
bottomhole pressure Pwp,k is given by:

QpD,k(tD) =
∫ tD

0
qpD,k(τ)dτ (35)

Taking the Laplace transform with respect to tD at the both
sides of Eq. (35), we obtain:

Q̂pD,k(s) =
q̂pD,k(s)

s
(36)

or

⃗̂QD(s) =



exp(−stpD,1)q̂pD,1(s)/s

exp(−stpD,2)q̂pD,2(s)/s
...

exp(−stpD,N)q̂pD,N(s)/s


=
(
⃗̂G
)−1

×
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PwpD,1
s2 −

M
∑
j=1

q f D, j
s2 G(s,xpD,1,ypD,1;x f D, j,y f D, j)exp(−st f D, j)

PwpD,2
s2 −

M
∑
j=1

q f D, j
s2 G(s,xpD,2,ypD,2;x f D, j,y f D, j)exp(−st f D, j)

...
PwpD,N

s2 −
M
∑
j=1

q f D, j
s2 G(s,xpD,N ,ypD,N ;x f D, j,y f D, j)exp(−st f D, j)


(37)

Now an analytical model for predicting transient flow rates
of multiple wells producing at constant bottomhole pressures
during boundary-dominated flow period in a closed rectangular
reservoir has been established. However, the solutions to the
model are in the Laplace transform space. By using the
numerical inversion method developed by Stehfest (1970), we
can convert these solutions from the Laplace transform space
into the real time space.

3. Simplified analytical model
Assume no well is produced at constant flow rate, all wells

are produced at constant but different flowing bottomhole
pressures, and all wells begin to produce at the same time.
Well i is located at (xi,yi), i = 1,2, . . . ,N. Then Eq. (2) can be
simplified as below:

∂ 2P
∂x2 +

∂ 2P
∂y2

=

(
φ µCt

K

)
∂P
∂ t

+

(
µB
Kh

) N

∑
i=1

qi(t)δ (x− xi)δ (y− yi) (38)

The reservoir initial condition is Eqs. (3); the reservoir
outer boundary condition is Eq. (4).

Well i is produced at constant flowing bottomhole pressure
Pw,i:

P(t,xi,yi) = Pw,i, (i = 1,2, · · · ,N) (39)
In the dimensionless space, we have:

∂PD

∂ tD
−
(

∂ 2PD

∂x2
D

+
∂ 2PD

∂y2
D

)
=

N

∑
i=1

qD,i(tD)δ (xD − xD,i)δ (yD − yD,i) (40)

Taking the Laplace transform with respect to tD at the both
sides of Eq. (40), we obtain:

sP̂D −
(

∂ 2P̂D

∂x2
D

+
∂ 2P̂D

∂y2
D

)
=

N

∑
i=1

q̂D,i(s)δ (xD − xD,i)δ (yD − yD,i)

(41)
The solution of Eq. (41) is given by:

P̂D(s,xD,yD) =
N

∑
i=1

q̂D,i(s)G(s,xD,yD;xD,i,yD,i) (42)

Note that the flowing bottomhole pressure of each well
is constant, then in Eq. (42) we let (xD,yD) = (xD,k,yD,k),
k = 1,2,3, . . . ,N, there holds:

PwpD,k

s
=

N

∑
i=1

q̂D,i(s)G(s,xD,k,yD,k;xD,i,yD,i) (43)

We can use the matrix form Eq. (43) to express the above
equation, and

⃗̂pwD =



PwpD,1
s

PwpD,2
s
...

PwpD,N
s


, ⃗̂qD(s) =



q̂D,1(s)

q̂D,2(s)
...

q̂D,N(s)


(44)

⃗̂G =


G̃11 · · · G̃1N

...
. . .

...

G̃M1 . . . G̃MN

 (45)

where 
G̃11 = G11(s,xD,1,yD,1;xD,1,yD,1)

G̃1N = G1N(s,xD,1,yD,1;xD,N ,yD,N)

G̃M1 = GM1(s,xD,N ,yD,N ;xD,1,yD,1)

G̃MN = GMN(s,xD,N ,yD,N ;xD,N ,yD,N)

and we have:

G(s,xD,i,yD,i;xD, j,yD, j) =

∞

∑
u=0

cos
(

uπxD,i
aD

)
cos

(
uπxD, j

aD

)
(2aDduωu)sinh(ωubD)

×
{

cosh[ωu(bD −|yD,i − yD, j|]
+cosh[ωu(bD − (yD,i + yD, j))

}
(46)

G(s,xD,i,yD,i;xD,i,yD,i) =

∞

∑
u=0

[
cos

(
uπxD,i

aD

)]2

(2aDduωu)sinh(ωubD)

×{cosh[ωu(bD − rwD,i)]+ cosh[ωu(bD −2yD,i)]} (47)
The dimensionless flow rates in the Laplace transform

space can be expressed below:

q̂D,1(s)

q̂D,2(s)
...

q̂D,N(s)


=
(
⃗̂G
)−1

×



PwpD,1
s

PwpD,2
s
...

PwpD,N
s


(48)

The dimensionless cumulative production in the Laplace
transform space is

⃗̂QD(s) =



q̂D,1(s)
s

q̂D,2(s)
s
...

q̂D,N(s)
s


=
(
⃗̂G
)−1

×



PwD,1
s2

PwD,2
s2

...
PwD,N

s2


(49)
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4. Validation
Computer Modeling Group Ltd., abbreviated as CMG,

develops market-leading reservoir simulation software, which
is known as the industry standard for advanced recovery
processes. In this paper, the CMG Black oil simulator IMEX
is used to build and run the simulation. And we will use
the proposed analytical model to investigate the production
performance of a three-wells system in a closed square-
shaped reservoir, as shown in Fig. 1. The input reservoir data,
formation properties and fluid properties data are shown in
Table 1. We assume the lower left point of the square is the
origin point of the Cartesian coordinate system, then Well A
is at (750 m, 375 m), Well B at (425.24 m, 937.5 m), Well C
at (1074.76 m, 937.5 m), as shown in Fig. 1.

Fig. 1. Three-wells system.

And we assume Well A, Well B and Well C in Figure 1
producing under the same constant bottomhole pressures of
10MPa, thus the production pressure difference of each well
is identical and keeps a constant during production, Pini −Pw f
= ∆Pw = 5 MPa.

Note that the positions of Well A, Well B and Well C form
an equilateral triangle, the three wells are equidistant from
the center of the square reservoir and producing under the
equal production pressure difference, so at a given time, their
transient flow rates are identical. By using the IMEX simulator,
we can obtain the transient flow rate of the three production
wells. Through the proposed model, we can calculate the
dimensionless flow rate of Well A in the same case as the
CMG simulation. Recall Eqs. (8) and (10), if we use practical
units, ( h in m; K in mPa·s; K in µm2; Ct in MPa−1; t in day;
q(t) and qre f in Sm3/day) then the dimensionless production
time and the dimensionless flow rate can be converted to the
production time and the flow rate as below:

t =
φ µCth2tD

86.4K
(50)

q(t) =
qD(tD)×qref

2π
(51)

Then, the calculated flow rate and flow rate obtained by
the CMG simulation can be compared, as shown in Fig. 2.

It can be found from the figure that the transient flow rate
predicted by the proposed model is basically consistent with
the overall trend of the transient flow rate obtained by the
CMG simulation over time, indicating that the results predicted
by the proposed model are reliable within a certain range.
Since we ignore the high order term in the model development

for multi-well system, and the numerical inverse Laplace trans-
form method proposed by Stehfest (1970) is an approximate
method, consequently, there exist some differences between
the CMG simulation and the proposed model results. But the
differences are not significant.

Fig. 2. Comparison of the transient flow rate obtained by the
CMG simulation and the proposed model of Well A.

5. Application and analysis
In this part, we will use the proposed model to study

the effects of number of wells, well arrangement style, reser-
voir size, bottomhole pressure difference and well production
starting time on the production performance of a multi-well
system.

5.1 The effect of number of wells
Example 1: We study the effect of number of wells

on production performance. The reservoir data, formation
properties and fluid properties data are given in Table 1, and
the production pressure difference of each well is identical and
keeps a constant during production, ∆Pw = 5 MPa. Calculate
the transient flow rates of Well A in the following cases.

Case 1: Only Well A is located at the center of the square-
shaped reservoir, as shown in Fig. 3.

Fig. 3. One-well system in a square reservoir.
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Table 1. Reservoir and fluid properties data.

Reservoir domain, Ω 1500 m × 1500 m

Initial reservoir pressure, Pini 15 MPa

Formation volume factor, B 1.15 Rm3/Sm3

Reservoir thickness, h 25 m

Reservoir porosity, φ 0.15

Reservoir permeability, K 0.1 µm2

Total reservoir compressibility, Ct 3.0 × 10−3 MPa−1

Oil viscosity, µ 5 mPa·s

Production time prior to shut-in, tp 720 hours

Wellbore radius, rw 0.1 m

Case 2: Two-wells system, Well A is at (750 m, 750 m),
Well B at (750 m, 1125 m), as shown in Fig. 4.

Fig. 4. Two-wells system in a square reservoir.

Case 3: Four-wells system, Well A at (750 m, 750 m),
Well B at (750 m, 375 m), Well C at (425.24 m, 937.5 m),
Well D at (1074.76 m, 937.5 m), as shown in Fig. 5.

Fig. 5. Four-wells system in a square reservoir.

Case 4: Five-wells system, Well A at (750 m, 750 m), Well
B at (484.83 m, 484.83 m), Well C at (484.83 m, 1015.17 m),

Well D at (1015.17 m, 1015.17 m), Well E at (1015.17 m,
484.83 m), as shown in Fig. 6.

Fig. 6. Five-wells system in a square reservoir.

The transient flow rates of Well A in the above four cases
are shown in Figs. 7 and 8.

Fig. 7. Cartesian plot of flow rate and cumulative production
of Well A in the square reservoir with different numbers of
wells.

As can be seen from Figs. 4, 5 and 6, the inter-well distance
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between Well A and its adjacent wells is identical and equal
to 375 m. As can be seen from Figs. 7 and 8, at a given
time, with the increase of the number of wells, the flow rate
of Well A decreases. Decline rate is defined as the slope of
straight line segment on the semi-log plot of q vs. t. It can
be seen from Fig. 8, the slope of the straight line segment
in Case 4 (Five-wells system) is the largest, the slope of
the straight line segment in Case 1 (One-well system) is
the smallest. At any time, with the increase of the number of
wells, the drainage area of Well A decreases, the interference
degree of adjacent wells to Well A increases, and the energy
consumption degree of the reservoir increases, which leads to
the decrease of transient flow rate and the increase of decline
rate of Well A.

Fig. 8. Semi-log plot of flow rate of Well A in the square
reservoir with different numbers of wells.

5.2 The effect of well arrangement style
Example 2: We study the effect of well arrangement

style on production performance. The reservoir data, formation
properties and fluid properties data are given in Table 1, and
the production pressure difference of each well is identical and
keeps a constant during production, ∆Pw = 5 MPa. Calculate
the transient flow rates of Well A in the following cases.

Case 1: Well A at (750 m, 375 m), Well B at (425.24
m, 937.5 m), Well C at (1074.76 m, 937.5 m), the three wells
form an equilateral triangle, as shown in Fig. 9.

Fig. 9. Three-wells system arranged as an equilateral triangle.

Case 2: Well A at (750 m, 750 m), Well B at (375 m,
750 m), Well C at (1125 m, 750 m), the three wells are at
positions half height of the square-shaped reservoir, they are
in a straight line parallel to the bottom edge of the square, as
shown in Fig. 10.

Fig. 10. Three-wells system arranged at half height of the
square.

Case 3: Well A at (750 m, 750 m), Well B at (484.83 m,
484.83 m), Well C at (1015.17 m, 1015.17 m), the three wells
are arranged along the diagonal of the square-shaped reservoir,
as shown in Fig. 11.

Fig. 11. Three-wells system arranged along the diagonal of
the square.

The transient flow rates of Well A in the above three cases
are shown in Figs. 12 and 13.

As can be seen from Figs. 12 and 13, in the early days,
the production performance of Well A is almost the same
in the above three cases. When production time is larger
than 300 days, the slope of the straight line segment in Case
1 (equilateral triangle well arrangement) is the largest. The
distance between Well A and the bottom edge of the square
is 375 m in Case 1 . Well A is at the center of the square
reservoir in Case 2 (half-height well arrangement) and in
Case 3 (diagonal well arrangement), the distance between
Well A and each closed boundary is the same and equal to
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750 m, the effects of the four boundaries can cancel each other
out in Case 2 and Case 3 . Compared with well interference
effects, the boundary effect from the bottom closed boundary
has greater influence on flow rate although the inter-well
distance in Case 1 is larger than that in Case 2 and Case 3 ,
which leads to the smallest transient flow rate and the largest
the decline rate of Well A in Case 1 at a large time (more
than 300 days).

Fig. 12. Cartesian plot of flow rate and cumulative production
of Well A in the three-wells system with different well
patterns.

Fig. 13. Semi-log plot of flow rate of Well A in the three-wells
system with different well patterns.

Example 3: We study the effect of inter-well distance on
production performance. Suppose Well A, Well B and Well
C form an equilateral triangle in a square-shaped reservoir,
the positions of the three wells are symmetric with respect to
the reservoir boundaries (see Fig. 1). The production pressure
difference of each well is identical and keeps a constant
during production, ∆Pw = 5 MPa. The reservoir data, formation
properties and fluid properties data are given in Table 1.
Calculate the transient flow rates of each well when the inter-
well distance is 100, 200, 300 and 400 m, respectively.

Obviously, at a given time the transient flow rates of the
three wells are equal to each other due to symmetric well

locations in the square reservoir. The transient flow rates of
Well A in the above four cases are shown in Figs. 14 and
15.

As can be seen from Figs. 14 and 15, if production time
is less than 200 days, the larger the inter-well distance, the
larger the transient flow rate, and the smaller the decline
rate. With the increase of inter-well distance, the degree of
interference between wells is reduced, consequently the energy
consumption degree of the reservoir decreases, and production
decline rate is also reduced. At a large time (more than 200
days), pressure transient has reached boundaries, with the
increase of inter-well distance, the distance between Well A
and the bottom edge of the square decreases (see Fig. 1), the
boundary effects become more pronounced, which leads to the
decrease of transient flow rate and the increase of decline rate
of Well A .

Fig. 14. Cartesian plot of flow rate and cumulative production
of Well A in the three-wells system with different inter-well
distances.

Fig. 15. Semi-log plot of flow rate of Well A in the three-wells
system with different inter-well distances.

5.3 The effect of reservoir size
Example 4: We study the effect of reservoir size on

production performance. Suppose Well A, Well B and Well
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C form an equilateral triangle in a square-shaped reservoir,
the positions of the three wells are symmetric with respect to
the reservoir boundaries (see Fig. 1). The production pressure
difference of each well is identical and keeps a constant
during production, ∆Pw = 5 MPa. The reservoir data, formation
properties and fluid properties data are given in Table 1.
Calculate the transient flow rates of each well when the
reservoir size is 1500 m × 1500 m, 1750 m × 1750 m, 2000
m × 2000 m and 2500 m × 2500 m, respectively.

Obviously, for a given reservoir size and at a given time,
the transient flow rates of the three wells are equal to each
other due to symmetric well locations in the square reservoir.
The transient flow rates of Well A in the above four cases
are shown in Figs. 16 and 17.

Fig. 16. Cartesian plot of flow rate and cumulative production
of Well A in the three-wells system with different reservoir
sizes.

Fig. 17. Semi-log plot of flow rate of Well A in the three-wells
system with different reservoir sizes.

As can be seen from Figs. 16 and 17, at a given time,
the larger the reservoir size, the larger the transient flow rate,
and the smaller the decline rate. With the increase of reservoir
size is, the drainage area of Well A increases, the interference
degree of adjacent wells to Well A decreases, which leads to
the increase of transient flow rate and the decrease of decline
rate of Well A .

5.4 The effect of bottomhole pressure difference
Example 5: We study the effect of bottomhole pressure

difference on production performance. Suppose Well A, Well
B and Well C form an equilateral triangle in a square-shaped
reservoir, the positions of the three wells are symmetric with
respect to the reservoir boundaries (see Fig. 1). The reservoir
data, formation properties and fluid properties data are given
in Table 1. Calculate the transient flow rates of Well A in the
following cases.

Case 1: The bottomhole pressure difference at Well A is 5
MPa, the bottomhole pressure difference at Well B and Well
C is identical and equal to 3 MPa. ∆PwA = 5 MPa; ∆PwB =
∆PwC = 3 MPa.

Case 2: The bottomhole pressure difference at Well A is 5
MPa, the bottomhole pressure difference at Well B and Well
C is identical and equal to 4 MPa, ∆PwA = 5 MPa; ∆PwB =
∆PwC = 4 MPa.

Case 3: The bottomhole pressure difference at each well
is identical and equal to 5 MPa, ∆PwA = ∆PwB = ∆PwC = 5
MPa.

As can be seen from Figs. 18 and 19, at a given time, with
the increase of bottomhole pressure difference (production
pressure difference) in adjacent wells (Well B and Well C),
the interference degree of adjacent wells to Well A increases,
which leads to the decrease of transient flow rate and the
increase of decline rate of Well A.

Fig. 18. Cartesian plot of flow rate and cumulative production
of Well A in the three-wells system with different bottomhole
pressure difference.

5.5 The effect of well production starting time
Assume there are six fully penetrating vertical well in a

square-shaped reservoir. The reservoir data, formation proper-
ties and fluid properties data are given in Table 1. Three wells
in the first group are produced at constant flowing bottom
hole pressures, another three wells in the second group are
produced at constant flow rates. The data of well locations,
wellbore radius, bottomhole pressure difference, flow rates and
production starting time are given in Table 2.
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Fig. 19. Semi-log plot of flow rate of Well A in the three-wells
system with different bottomhole pressure difference.

Example 6: Calculate the transient flow rates of Well No.1
in the first group, i.e. the well at (500 m, 500 m), compare
the calculation results in the following cases:

Case 1: All the data, i.e., the production starting time,
bottomhole pressure difference of each well in the first group,
flow rate of each well in the second group are the same as
those shown in Table 2.

Case 2: The flow rate of each well in the second group
is identical and equal to 150 m3/day, other data are same as
those shown in Table 2.

Case 3: The production starting time of each well is t = 0,
other data are same as those shown in Table 2.

Case 4: The production starting time of each well is t = 0,
and the flow rate of each well in the second group is identical
and equal to 150 m3/day, other data are same as those shown
in Table 2.

After 45 days of the production starting time of Well No.1
in the first group, all the six wells have begun to produce in
the above four cases. As can be seen from Figs. 20 and 21,
when production time is larger than 45 days, if constant flow
rate of the three wells in the second group is equal to a small
value of 50 m3/day, there is no significant difference between
the transient flow rates in Case 1 and Case 3; if constant flow
rate of the three wells in the second group is equal to a large
value of 150 m3/day, there is significant difference between
the transient flow rates in Case 2 and Case 4, which leads to
the conclusion that only when constant flow rates of the wells
in the second group are large, the production starting times of
the two group wells have significant influence on production
performance on Well No.1.

All the six wells in Case 3 start producing at the same time
at t = 0, the reservoir energy consumption is relatively large,
resulting in a slightly lower flow rate in Case 3 than in Case
1. For the same reason, at a given time, the transient flow rate
in Case 4 is smaller than that in Case 2.

But the value of constant flow rates of the three wells
in the second group have significant influence on production
performance on Well No.1 in the first group. With the increase
of flow rate of the wells in the second group from 50 to

150 m3/day, the energy consumption degree of the reservoir
increases, which leads to the decrease of transient flow rate
and the increase of decline rate of Well No.1 in Case 2 and
Case 4. So, at a given time, the transient flow rate in Case
1 is larger than that in Case 2, and the transient flow rate in
Case 3 is larger than that in Case 4. Because all the six wells
begin to produce at time t = 0 and flow rate of the wells in the
second group is 150 m3/day, the reservoir energy consumption
is largest, consequently transient flow rate of Well No.1 at a
given time is the smallest in Case 4.

Fig. 20. Cartesian plot of flow rate and cumulative production
of Well No.1 in the first group.

Fig. 21. Semi-log plot of flow rate of Well No.1 in the first
group.

6. Conclusions
Compared with the empirical or semi-analytical models

in the literature, our proposed model in this paper has a
solid theoretical basis, and the proposed analytical model
provides a computationally efficient, accurate and convenient
method for predicting transient flow rates of multiple wells
producing at different constant bottomhole pressures during
boundary-dominated flow period in a closed rectangular reser-
voir. Comparing with the results in the CMG simulation, it is
found that the proposed model is accurate enough to predict
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Table 2. Well location, wellbore pressure and flow rate data

Wells in the first group Wells in the second group

(xp,1,yp,1) = (500m,500m) ∆Pwp,1 = 5MPa (x f ,1,y f ,1) = (1000m,500m) q f ,1 = 505m3/day

(xp,2,yp,2) = (500m,750m) ∆Pwp,2 = 5MPa (x f ,2,y f ,2) = (1000m,750m) q f ,2 = 505m3/day

(xp,3,yp,3) = (500m,1000m) ∆Pwp,3 = 5MPa (x f ,3,y f ,3) = (1000m,1000m) q f ,3 = 505m3/day

rw = 0.1 m rw = 0.1 m

tp,1 = 0 t f ,1 = 0

tp,2 = 30 days t f ,2 = 15 days

tp,3 = 45 days t f ,3 = 35 days

the production performance of multiple wells under constant
bottomhole pressures. Also, the transient flow rates of multiple
well systems are affected by the number of wells, the well
arrangement style, the reservoir size, the bottomhole pressure
difference and the well production starting time.

The following conclusions can be reached:

• In a given reservoir and at a given time, the flow rate of
an observation well decreases as the number of total wells
increases and bottomhole pressure differences of adjacent
wells increase.

• In a given reservoir and at a given time, if the observation
well is near a closed boundary, the influence on the flow
rate of the boundary is greater than that of the inter-well
distance.

• In a given reservoir, if production time is small, the
greater distance between the observation well and adja-
cent wells, the larger the flow rate of the observation well;
if production time is large, the greater distance between
the observation well and adjacent wells, the smaller the
flow rate of the observation well;

• At a given time, the larger the reservoir size, the larger
flow rate of the observation well in a multiple-wells
system.

• If the multiple-wells system has one group of wells pro-
duced at constant bottom hole pressures, another group
of wells produced at constant flow rates, notably, only
the wells with constant flow rates exhibit high production
values, the well production starting time has significant
effects on the performance of the observation well.

Nomenclature
a = Length of rectangular reservoir, m
aD = Dimensionless length of rectangular reservoir
b = Width of rectangular reservoir, m
bD = Dimensionless width of rectangular reservoir
B = Formation volume factor, Rm3/Sm3

Ct = Total reservoir compressibility, MPa−1

h = Formation thickness, m
K = Reservoir permeability, µm2

P = Pressure, MPa
Pini = Initial reservoir pressure, MPa
Pw = Flowing bottom bore pressure, MPa
PD = Dimensionless pressure
PwD = Dimensionless flowing bottom bore pressure

P̂D = Dimensionless pressure in Laplace transform space
Q = Cumulative production, Sm3

QD = Dimensionless cumulative production
Q̂D = Dimensionless cumulative production in Laplace

transform space
q = Flow rate, Sm3/day
qD = Dimensionless flow rate
q̂D = Dimensionless flow rate in Laplace transform space
qre f = Reference flow rate, Sm3/day
r = Radial distance, m
rD = Dimensionless radial distance
rw = Wellbore radius, m
rwD = Dimensionless wellbore radius
t = Time, day
tD = Dimensionless time
xi = Coordinate in X direction of well i in rectangular

reservoir, m
xDi = Dimensionless coordinate in X direction of well i in

rectangular reservoir
yi = Coordinate in Y direction of well i in rectangular

reservoir, m
yDi = Dimensionless coordinate in Y direction of well i in

rectangular reservoir
Greek symbols
µ = Fluid viscosity, mPa·s
φ = Porosity
λuv = A function defined by Eq. (21)
ωu = A function defined by Eq. (30)
Subscripts
D = Dimensionless
f = Constant flow rate production status
ini = Initial
p = Constant bottom hole pressure production status
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