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Abstract:
In this paper, we present a study of machine learning algorithms for predicting patterns
of natural fracture network. The dataset used originates from the Teapot Dome field,
USA. Initially, fracture azimuths were categorized into eight classes, each representing a
45-degree segment. Various machine learning models were then employed, ranging from
traditional boosting algorithms to more recent approaches to predict the fracture classes.
The K-Nearest Neighbors (KNN) algorithm was used to produce the best initial results
with an accuracy of approximately 70%. After applying data augmentation techniques, we
improved the model performance, achieving an accuracy of 88%. In addition, with feature
engineering, we achieve 98%. This work highlights the potential of machine learning
models in predicting fracture paths, contributing to the broader application of ML in the
geomechanical model.

1. Introduction
Fracture networks play a critical role in several geoscien-

tific fields, including petroleum engineering, mining, and hy-
drogeology. A comprehensive understanding of these networks
is crucial for optimizing the extraction and transportation of
subsurface resources. Accurate characterization of fractures
significantly enhances the efficiency of resource extraction
processes, such as hydraulic fracturing, and is vital for pre-
dicting reservoir behavior. In particular, reliable prediction of
fracture distribution can maximize resource recovery while
minimizing operational risks and costs.

In the past, heavily statistics-based methods such as
multiple-point statistics (MPS) and other geostatistical meth-
ods have been used to analyze fracture paths and their distri-
bution. Although they provided some insight into the nature
of fractures, they lacked the ability to capture higher-order
spatial relationships, particularly those physically related, such
as the influence of global and local stress fields on fracture

propagation.
To address these drawbacks, machine learning (ML) algo-

rithms were introduced as a complement to MPS. After being
trained on rich datasets with geostatistical information, ML
models demonstrated the ability to capture the intricate nature
of fractures and their propagation (Srivastava et al., 2004;
Chandna and Srinivasan, 2022, 2023; Amanbek et al., 2023;
Freites et al., 2023; Merembayev and Amanbek, 2023). This
established that ML models can significantly improve our
understanding and accurate prediction of fracture paths.

For example, in the study by Chandna and Srini-
vasan (2022), ML models were combined with MPS to im-
prove the precision of fracture prediction using the Teapot
Dome dataset. This dataset, derived from FMI logs near
well 67-1-x-10 in the Tensleep Formation, includes detailed
fracture geometry and stress data. The study divided the area
around fracture tips into eight equal segments of 45 degrees
each and employed a triangular mesh to extract critical input

 

 

Press

Vandy

Scientific

 

∗Corresponding author.
E-mail address: bakytzhan.kurmanbek@nu.edu.kz (B. Kurmanbek); timur.merembayev@nu.edu.kz (T. Merembayev);
yerlan.amanbek@nu.edu.kz (Y. Amanbek).
3007-5602 © The Author(s) 2024.
Received October 5, 2024; revised November 9, 2024; accepted December 9, 2024; available online December 12, 2024.

https://orcid.org/0000-0002-3958-8871
https://doi.org/10.46690/ager.2024.0x.0x


168 Kurmanbek, B., et al. Computational Energy Science, 2024, 1(4): 167-174

parameters, such as normal stresses in the x and y directions,
and shear stress. The propagation of the fracture was simulated
using a probability distribution within predefined angle classes,
determining movement along the grid based on the most
probable adjacent class. The approach, validated with a voting
classifier of SVM, random forests, and gradient-boosted trees,
achieved an 80% accuracy through 10-fold cross-validation.

Although this study demonstrated the successful integra-
tion of machine learning and MPS for modeling fracture
behavior, further research has expanded the application of ML
models for fracture network prediction in porous media. In
Merembayev and Amanbek (2023), the authors used Light-
GBM to predict fracture networks in porous media based on
geological data from Kazakhstan. The model accurately esti-
mated fracture parameters, including azimuth angles, showing
promise for use in less-explored subsurface regions. However,
challenges remain, particularly in comparing the performance
of different ML models and optimizing feature engineering
from complex geological datasets.

To address these challenges, Valera et al. (2018) introduced
a machine-learning surrogate model using Gaussian Process
Regression to predict breakthrough times in discrete fracture
networks (DFNs). This model was trained on a limited set of
DFN simulation data and achieved predictions within 20%-
30% of high-fidelity simulations while also quantifying un-
certainty using Bayesian inference. Although this approach
demonstrated a good balance between computational effi-
ciency and accuracy, its scalability to more extensive fracture
networks with higher complexity remains a topic for further
investigation.

Alternative approaches have also been explored to enhance
fracture property estimation. For instance, Feng et al. (2024)
proposed using Markov Chain Monte Carlo (MCMC) algo-
rithms to estimate fracture density and aspect ratio in reser-
voirs based on seismic data. Their novel use of a training im-
age to model spatial fracture distribution improved prediction
accuracy, though the computational cost of MCMC methods-
particularly the extended Metropolis approach-remains a sig-
nificant barrier for larger datasets, with processing times
extending up to three weeks.

Neural network architectures, particularly deep learning
models, represent another powerful tool in fracture characteri-
zation. These models can process vast datasets, model intricate
subsurface structures, and make high-precision predictions in
geoscience applications (Bishop and Nasrabadi, 2006; Dram-
sch, 2020). Recent work highlights their potential to solve
complex transport flow problems in fractured porous media
and to reduce uncertainty in subsurface modeling. However,
challenges related to overfitting and computational demands,
especially in larger fracture networks, need further exploration.

In this paper, we examine machine learning algorithms
for predicting azimuth categories in fracture network models.
Specifically, we explore the performance of Decision Tree,
Random Forest, K-Nearest Neighbors, and Deep Neural Net-
works using real-world data from the Teapot Dome field, USA.
To improve prediction accuracy, we incorporate augmented
data into the training process and employ feature engineering
techniques to assess the influence of neighboring parameters.

The rest of the paper is structured as follows: Section 2 de-
scribes the dataset used in this research, Section 3 discusses the
machine learning algorithms and metrics, Section 4 presents
the obtained results, and Section 5 shows the results of feature
engineering and deep learning techniques. In Section 6, we
discuss the overall results, and the conclusion is provided in
Section 7.

2. Dataset description
Teapot Dome, located in Natrona County, Wyoming, ap-

proximately 30 miles north of Casper (Cooper et al., 2006;
Schwartz, 2006), has been a notable site for geological and
engineering studies since its development in 1915. Initially
designated as National Petroleum Reserve number 3, the site
has evolved from shallow oil extraction during the Teapot
Dome scandal in the 1920s to a modern research hub for en-
hanced oil recovery, CO2 sequestration, and advanced drilling
technologies. Managed by RMOTC, the site provides extensive
public-domain data, fostering collaboration between industry,
government, and academia.

The field’s fracture network has been extensively studied,
particularly in the Parkman Sandstone of the Mesa Verde
Formation (Cooper et al., 2006; Schwartz, 2006), where three
primary fracture sets-hinge-parallel, hinge-perpendicular, and
hinge-oblique-have been identified. Fig. 1 shows the location
of the Teapot Dome, while Fig. 2 depicts the fracture network
of the mine.

Fig. 1. Location of Teapot Dome (Cooper et al., 2006).

In this study, we use a dataset comprising 6,377 data points
from Teapot Dome. Each data point includes the mid-point
coordinates (mid x, mid y) and the azimuth (azim frac) of
a fracture segment. These fracture segments are generated
by dividing larger fractures into smaller segments, with the
midpoint of each segment used to determine its location and
azimuth angle. The fracture network is modeled as a graph,
with nodes (black circles) representing the fracture endpoints
and segments (blue circles) connecting these nodes. This
structure is illustrated in Fig. 3.

For this study, the azimuths of the fracture segments have
been adjusted relative to the y-axis, and the 360-degree range
of the azim frac variable has been divided into eight equal
classes, each spanning 45 degrees. Table 1 details the fre-
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quency of data points in each class, highlighting a significant
class imbalance. Class 6, representing 26.7% of the data,
is overrepresented, while Class 1, comprising only 5.2%, is
underrepresented.

Table 1. Class frequencies in the dataset.

Class Frequency Share

0 654 0.103

1 334 0.052

2 999 0.157

3 458 0.072

4 836 0.131

5 919 0.144

6 1701 0.267

7 476 0.075

Fig. 2. Fracture network of Teapot Dome.

As illustrated in Table 1 and Fig. 4, the dataset displays
a significant class imbalance, with Class 6 dominating the
data distribution. This imbalance poses challenges for machine
learning model performance, as models may become biased
toward the overrepresented class. Therefore, techniques such
as data augmentation, rebalancing, or synthetic data generation
may be necessary to improve prediction accuracy and mitigate
the effects of this imbalance.

3. Methodology

3.1 Data preprocessing
Due to the complexity of fracture azimuths and the lack

of critical information such as stress conditions and fracture
length, this problem is framed as a classification task rather

than a regression problem. A regression approach would
require additional data to be viable. Therefore, the primary
objective is to predict the fracture azimuth class.

Fig. 3. Schematic showing nodes (black circles) and fracture
segments (blue circles) in the fracture network.

Fig. 4. Visualization of class distribution in the dataset.

3.2 Machine learning models
To address the classification task, we implemented several

machine learning models, ranging from simple to more com-
plex algorithms. The models evaluated include Multinomial
Logistic Regression, Decision Trees, Random Forests, K-
Nearest Neighbors (KNN), LightGBM, XGBoost, and Cat-
Boost. The dataset was split into training (70%), validation
(15%), and testing (15%) sets, yielding 4463, 957, and 957
samples, respectively.

We use the following ML models: the simplest one is
Multinomial Logistic Regression, which is just an exten-
sion of logistic regression to multiple class outcomes (Nick
and Campbell, 2007). Then, there are tree-based algorithms
such as Decision Trees, where the tree structure is built
by repeatedly dividing information, and the leaves represent
classes (Rokach and Maimon, 2005). Random Forest is an
extension of Decision Trees, using them multiple times on
random subsets of the data and simultaneously deciding the
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outcomes (Breiman, 2001). Along with these, we use XG-
Boost (Chen et al., 2015), LightGBM (Ke et al., 2017), and
CatBoost (Prokhorenkova et al., 2018), which are gradient
boosting algorithms. One non-parametric algorithm, based on
distance and class decisions by voting among its neighbors,
is K-Nearest Neighbors (Cover and Hart, 1967). From Deep
Learning, we use Dense Neural Networks, which are used
to capture high-level relationships through a multi-layered
structure (Bishop and Nasrabadi, 2006).

3.3 Evaluation metrics for multi-class
classification

There are many ways of measuring the performance of
multiclass classifiers. We use classification reports and provide
loose definitions of the metrics here.

Accuracy is the proportion of correctly classified examples,
while precision calculates how many positively identified
examples are actually positive, and recall is the ratio of how
many actual positive examples were identified correctly. The
harmonic mean of precision and recall gives the F1-score.
Support is the number of examples in each class. Macro
averages are just the average of the chosen metric values, and
the weighted average is an average where the weight of each
class is taken into account. Most of the time, we emphasize the
F1-score as a balanced measure between precision and recall,
since our dataset is imbalanced.

In our future research, we intend to use an adaptive method
for simulation of the flow and transport (Amanbek et al., 2019)
with the generated fracture network and compare it with the
result of the original fracture network (Amanbek et al., 2023).

4. Results

4.1 Simple models
The multinomial logistic regression yielded an accuracy of

0.2748 (27.48%) (see Table 2). This value is low and indicates
the model’s inability to capture the nature of the fractures.

Table 2. Classification report for multinomial logistic
regression.

Class Precision Recall F1-Score Support

0 0.00 0.00 0.00 91

1 0.00 0.00 0.00 42

2 0.45 0.07 0.12 146

3 0.00 0.00 0.00 78

4 0.00 0.00 0.00 128

5 0.00 0.00 0.00 147

6 0.27 0.99 0.42 256

7 0.00 0.00 0.00 69

Accuracy 0.27 (Support: 957)

Macro Avg 0.09 0.13 0.07 957

Weighted Avg 0.14 0.27 0.13 957

The classification report shows that most metric values are
zero. This might be because the relationships between the
fractures are too complex and non-linear.

4.2 Advanced models
4.2.1 Decision tree model

The Decision Trees yielded an accuracy of 0.6541
(65.41%), which is significantly higher than the output of
multinomial logistic regression. The metrics are fairly bal-
anced, with class 6 showing the best result due to its high
density, achieving a precision of 0.72, recall of 0.73, and an
F1-score of 0.73 (see Table 3). Other classes have lower but
reasonably good statistics.

Table 3. Classification report for decision tree model.

Class Precision Recall F1-Score Support

0 0.59 0.58 0.59 91

1 0.52 0.60 0.56 42

2 0.59 0.59 0.59 146

3 0.60 0.60 0.60 78

4 0.69 0.70 0.70 128

5 0.68 0.68 0.68 147

6 0.72 0.73 0.73 256

7 0.63 0.57 0.60 69

Accuracy 0.65 (Support: 957)

Macro Avg 0.63 0.63 0.63 957

Weighted Avg 0.65 0.65 0.65 957

Overall, the results are better and more balanced; however,
low-density classes like class 1 continue to challenge the
model.

4.2.2 Random forest model

The Random Forest model outperforms both the decision
tree and multinomial logistic regression models, achieving an
accuracy of 67.18% (see Table 4). This improvement indicates
that the ensemble method is better at generalizing the fracture
azimuth classification task compared to a single decision tree.

For class 0, we obtained the precision and recall, which are
both relatively high at 0.65 and 0.71, respectively, meaning the
model correctly identifies class 0 fractures and minimizes false
positives. As with previous models, class 6 has the highest
support and performs well with a precision of 0.70 and recall
of 0.76. This high recall indicates that the model correctly
identifies most instances of class 6.

Overall, the model performs well in more frequent classes
(such as class 6) and shows a more balanced performance
across all classes, making it more robust than a single decision
tree. However, the model still struggles with some less frequent
classes (like class 1 and class 7).

Other boosting algorithms like, XGBoost, LightGBM and
CatBoost gave similar results around 66%.
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Table 4. Classification report for random forest model.

Class Precision Recall F1-Score Support

0 0.65 0.71 0.68 91

1 0.58 0.50 0.54 42

2 0.63 0.66 0.64 146

3 0.62 0.53 0.57 78

4 0.69 0.70 0.69 128

5 0.71 0.69 0.70 147

6 0.70 0.76 0.73 256

7 0.66 0.48 0.55 69

Accuracy 0.67 (Support: 957)

Macro Avg 0.66 0.63 0.64 957

Weighted Avg 0.67 0.67 0.67 957

4.2.3 K-Nearest neighbors model

For class 0, precision and recall are relatively high, at
0.64 and 0.65, respectively, showing that the model effectively
identifies fractures in this class. The result of class 2 is a
precision of 0.67 and a recall of 0.73, which shows that this
class performed well, indicating that the KNN algorithm can
effectively distinguish fractures in this category. Like other
models, Class 6 performed strongly, with precision and recall
at 0.76 (see Table 5). This high performance is due to the larger
support for this class. Despite moderate precision (0.73), recall
is lower at 0.51 for class 7, which suggests that the model
identifies some fractures in this class but is less successful at
capturing all of them. The class imbalance likely contributes
to this result. Classes 4 and 5 also performed well, with F1
scores around 0.73 and 0.75, respectively, indicating the model
is adept at predicting these classes.

Table 5. Classification report for K-Nearest neighbors.

Class Precision Recall F1-Score Support

0 0.64 0.65 0.64 91

1 0.56 0.64 0.60 42

2 0.67 0.73 0.70 146

3 0.60 0.62 0.61 78

4 0.72 0.74 0.73 128

5 0.76 0.74 0.75 147

6 0.76 0.76 0.76 256

7 0.73 0.51 0.60 69

Accuracy 0.70 (Support: 957)

Macro Avg 0.68 0.67 0.67 957

Weighted Avg 0.71 0.70 0.70 957

Overall, the K-Neighbors algorithm achieved an impressive

accuracy of 70.42%, outperforming both the decision tree and
Random Forest models. This higher accuracy suggests that
KNN effectively captures the spatial relationships and azimuth
classes of fractures, particularly for frequent classes such as
Class 6, while still handling less frequent classes like Class 7
reasonably well.

4.3 Data augmentation and handling class
imbalance

Given the limitations of the original dataset, including
its size and the issue of class imbalance, we employed a
data augmentation strategy to enhance the training process.
Specifically, two new datasets of equal size to the original
are generated by calculating the fracture start and end points
from the midpoints provided in the dataset. The length of the
fractures was set to 1,000 units, and two equidistant points
were selected from each fracture’s start and endpoints (see Fig.
5). After concatenating these new datasets with the original
data, we re-applied the machine learning algorithms previously
discussed.

Fig. 5. Visualization of the data augmentation strategy.

Among the models tested, K-Nearest Neighbors (KNN)
yielded the best performance, achieving an accuracy of
88.32%. The classification report for KNN is presented in
Table 6.

The report shows that the model, after data augmentation,
improved greatly, with most class statistics being greater than
0.80. As usual, class 6 outperforms other classes with a
precision of 0.92, a recall of 0.94, and an F1-score of 0.93.
Even with the least number of examples in class 1, its statistics
are around 0.80.

Overall, the accuracy of 88% and other metric mea-
sures show that data augmentation is an effective method
for increasing the model’s performance. The macro-average
and weighted-average metrics also reflect the model’s high
predictive power in general.

Even though our dataset remained imbalanced after data
augmentation, excellent results are achieved. The way we
equalize the number of examples in each class during data
augmentation also impacts the result, depending on whether
we balance the class with the fewest or the highest number of
examples.

To handle class imbalance, we also used methods like
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the Synthetic Minority Over-sampling Technique (SMOTE)
(Li et al., 2022). It generates new examples by interpolating
between existing examples. We used it to oversample the
training data and trained the KNN model, which was tested
on the imbalanced test dataset. However, the results before
data augmentation did not improve. This indicates that the
relationships between the fractures are too complex, and
interpolation methods like SMOTE are ineffective for our
dataset.

Next, we aim to use feature engineering and deep learning
methods to improve the existing results.

Table 6. Classification report for K-Nearest neighbors after
data augmentation.

Class Precision Recall F1-Score Support

0 0.87 0.82 0.84 286

1 0.85 0.78 0.81 151

2 0.81 0.88 0.85 413

3 0.86 0.87 0.86 210

4 0.90 0.86 0.88 399

5 0.89 0.90 0.89 427

6 0.92 0.94 0.93 761

7 0.94 0.87 0.90 223

Accuracy 0.88 (Support: 2870)

Macro Avg 0.88 0.86 0.87 2870

Weighted Avg 0.88 0.88 0.88 2870

5. Feature engineering and model performance
One way to improve the model’s performance is through

feature engineering, which involves generating new features
from the existing dataset to enrich its information field.

We applied the KNN model to cluster our dataset into
eight classes. These new classes are different from the azimuth
fracture’s classes, as they are based on the physical locations
of the fractures.

Additionally, for each class, we identified the closest five
fractures and recorded their data as new features, including the
Euclidean distances to the midpoints of these five fractures. In
total, there are 25 columns and several models are trained on
this dataset. The results are shown in Table 7.

We also implemented a deep learning model, which
achieved an accuracy of 73.98%.
To gain deeper insights into the impact of the features, we
utilized SHAP (SHapley Additive exPlanations) and conducted
a feature importance analysis, as shown in Fig. 6.

The feature importance analysis indicates that the azimuths
of the nearest fractures, particularly the azimuths of the five
closest fractures, significantly influence the class of a fracture.

Among all the models evaluated, LightGBM achieved the
highest accuracy, reaching 77.84%.

We also experimented with a Dense Deep Neural Network
(DNN) consisting of six hidden layers. The DNN achieved

an accuracy of 82.12%, surpassing the performance of the
LightGBM model, which previously held the highest accuracy
at 77.84%. This indicates that the DNN was able to capture
more complex patterns in the data, potentially due to its
ability to model non-linear relationships more effectively. Fig.
7 shows the loss visualization across different epochs during
the training process.

Fig. 6. Feature importance scores.

Fig. 7. Loss across training over epochs.

As seen in Fig. 7, the loss function decreases steadily over
the epochs, indicating that the model is learning effectively
and converging to a minimum. However, the deep learning
model, despite its high accuracy, comes with the trade-offs of
longer training times and higher computational requirements
compared to tree-based models like LightGBM. Additionally,
DNNs can be more prone to overfitting, especially with small
or imbalanced datasets, but the use of regularization techniques
and dropout layers in our architecture helped mitigate this
issue.

In the next step, we combined data augmentation with
feature engineering, resulting in a dataset with 25 columns
and 19,131 data points. Of these, 13,391 data points (70%)
were used for training, and the remaining 5,740 data points
were split equally between test and validation sets (15% each).
The performance of the models on this enhanced dataset is
summarized in Table 8.

Table 8 shows that combining data augmentation with fea-
ture engineering significantly boosted the models’ predictive
capabilities. Both XGBoost and LightGBM reached accuracies
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Table 7. Performance of models on feature-engineered dataset.

Model Accuracy F1-weighted average Precision-weighted average Recall-weighted average

Random Forest 75.44% 0.76 0.76 0.73

KNeighbors 68.33% 0.68 0.68 0.68

XGBoost 76.48% 0.76 0.76 0.76

LightGBM 77.84% 0.78 0.78 0.78

CatBoost 77.80% 0.77 0.77 0.77

Table 8. Performance of models on feature-engineered and data-augmented dataset.

Model Accuracy F1-macro average Precision-macro average Recall-macro average

XGBoost 98.08% 0.98 0.98 0.98

LightGBM 98.32% 0.98 0.98 0.98

over 98%. These findings indicate that using augmentation
alongside feature engineering can effectively address the com-
plexities of the fracture prediction task.

6. Discussion
In this research, machine learning algorithms have shown

effectiveness in predicting fracture network patterns. By in-
corporating feature engineering and data augmentation, we
observed notable improvements in the accuracy of predicting
fracture azimuths. This suggests that integrating new features
from geology, geophysics, geometry, and other relevant pat-
terns could enhance the precision of the machine learning
models. However, collecting this type of data is both complex
and costly.

Techniques like SMOTE (Synthetic Minority Over-
sampling Technique) did not significantly improve, likely due
to the intricate spatial relationships between data points. This
finding highlights that basic oversampling methods may not
adequately address class imbalance in geospatial datasets,
where factors like proximity and spatial orientation are crucial.

In our research, we considered 2D fracture networks. The
machine learning approach can be extended to 3D fracture
networks. However, gathering 3D data may require advanced
logging techniques, such as 3D seismic data or borehole imag-
ing logs, which are more expensive and may not be as readily
available as 2D data. For 3D, two angles would define the
fracture orientation. Additionally, working in 3D introduces
more complexity regarding data storage and computational
costs. Due to their higher dimensionality, the models would
need more data and time to train effectively.

7. Conclusion
We explore the application of various machine learning

algorithms to predict azimuth categories in a fracture network
model. Using real-world data from the Teapot Dome field in
the USA, we compare the performance of several models,
including Decision Trees, Random Forests, and KNN.

This paper studies various machine learning algorithms to

predict categories of azimuth in the fracture network model.
We use the fracture network dataset from the Teapot Dome
field. The results have indicated that KNN shows the best ac-
curacy of 70% with training of the original data. An accuracy
improvement of 88% was achieved using additional augmented
data for the KNN model. Additionally, by using feature
engineering with data augmentation, an accuracy of 98%
was achieved. From the outcome of the feature engineering
investigation, it is possible to conclude that the azimuth classes
of the closest five neighbors have a high impact on defining the
azimuth category of the fracture segment. Future work could
explore the integration of additional physical characterizations
and apply these models to other datasets.

The machine learning models are powerful tools for pre-
dicting fracture networks, especially when combined with
data augmentation and feature engineering. The ability to
accurately predict fracture orientations has important implica-
tions for subsurface resource extraction, such as hydrocarbon
production and CO2 sequestration. Moreover, the impact of
neighboring fractures on azimuth prediction highlights an
opportunity for further investigation into more complex spatial
relationships within fracture networks.

In our further research, we plan to apply deep learning
algorithms such as the Bayesian neural network and Kol-
mogorov Arnold Network and extend to 3D fracture network
modeling, which could provide a more comprehensive under-
standing of subsurface fracture patterns and their behavior.
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