A gradient flow-based robust algorithm for solving a sequence of smallest eigenvalues with applications

Authors

  • Na Peng School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, P. R. China
  • Shuyu Sun School of Mathematical Sciences, Tongji University, Shanghai 200092, P. R. China

Keywords:

Gradient flows, length-preserving, unconditional energy stability, error estimation, existence and uniqueness theorem

Abstract

Eigenvalues are core quantities to connect mathematical operators with practical physical and engineering problems. The computation of eigenvalues (and eigen-vectors) is a fundamental numerical procedure with broad and critical applications across engineering, science, and interdisciplinary fields-especially in problems involving dynamic systems, stability analysis, pattern recognition, and multi-physics coupling. In this paper, we first review a few important application examples of eigenvalues in finite element error estimation, energy engineering, quantum mechanics, and chemical adsorption. Existing eigenvalue solving methods have drawbacks such as sensitivity to initial parameters and for iterative methods, lack of robustness with respect to iterations, for eample, difficulty in balancing the preservation of length and unconditional energy stability at the iteration.  In this paper, we present an efficient and robust algorithm for solving the first m eigenvalues problem.  It can be extended to both linear and nonlinear problems. This algorithm has several unique advantages. It converges to the first eigenpair or the first m eigenpairs from arbitrary initial guesses.  Moreover, its strict length preservation and unconditional energy stability ensure high robustness throughout the computation and maintain stable convergence even when large time steps are employed. We begin by deriving the desired gradient flow equation through the introduction of an extended gradient flow and prove that it possesses the properties of length preservation and energy dissipation, implying that the solutions of our gradient flow equation lies  on the Stiefel manifold. Then it is proved that the ordinary differential equation form of this equation has the desired property of existence and uniqueness of a solution. We present an effective algorithm and demonstrate that both its ordinary differential equation and discrete scheme retain length preservation and energy dissipation. Finally, the effectiveness of the algorithm is validated through numerical experiments.

Document Type: Original article

Cited as: Peng, N., Sun, S. A gradient flow-based robust algorithm for solving a sequence of smallest eigenvalues with applications. Computational Energy Science, 2025, 2(2): 24-37. https://doi.org/10.46690/compes.2025.02.03

References

Auchmuty, G. Unconstrained variational principles for eigenvalues of real symmetric matrices. SIAM journal on mathematical analysis, 1989, 20(5): 1186-1207.

Auchmuty, G., Rivas, M. A. Unconstrained variational principles for linear elliptic eigenproblems. ESAIM: Control, Optimisation and Calculus of Variations, 2015, 21(1): 165-189.

Achtziger, W., Kočvara, M. Structural topology optimization with eigenvalues. SIAM Journal on Optimization, 2008, 18(4): 1129-1164.

Allen, E. J., Berry, R. M. he inverse power method for calculation of multiplication factors. Annals of Nuclear Energy, 2002, 29(8): 929-935.

Betcke, T., Voss, H. A Jacobi-Davidson-type projection method for nonlinear eigenvalue problems. Future Generation Computer Systems, 2004, 20(3): 363-372.

Botchev, M. A., Sleijpen, G. L. G., Sopaheluwakan, A. An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems. Linear algebra and its applications, 2009, 431(3-4): 427-440.

Brenner, S. C., Scott, L. R. The mathematical theory of finite element methods. New York, NY, USA, Springer, 2008.

Braess, D. Finite elements: Theory, fast solvers, and applications in solid mechanics (3rd ed). Cambridge, England, Cambridge University Press, 2007.

Banjai, L., Boulton, L. Computation of sharp estimates of the Poincaré constant on planar domains with piecewise self-similar boundary. Journal of Fractal Geometry, 2021, 8(2): 153-188.

Bohr, N. On the constitution of atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 26(153): 476-502.

Brenig, W., Schönhammer, K. On the theory of chemisorption. Zeitschrift für Physik, 1974, 267(3): 201-208.

Budd, C. J., Piggott, M. D. Geometric integration and its applications. Handbook of Numerical Analysis, 2003, 11: 35-139.

Born, M., Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der Physik, 1927, 389(20): 457-484.

Bao, W., Du, Q. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM Journal on Scientific Computing, 2004, 25(5): 1674-1697.

Ciarlet, P. G. The finite element method for elliptic problems. Amsterdam, Netherlands, North-Holland Publishing Company, 1978.

Crouzeix, M., Raviart, P. A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue française d'automatique informatique recherche opérationnelle. Mathématique, 1973, 7(R3): 33-75.

Ciarlet, P. G. The finite element method for elliptic problems. Philadelphia, USA, Society for Industrial and Applied Mathematics, 2002.

Chaves, A., Azadani, J. G., Alsalman, H., et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications, 2020, 4(1): 29.

Canfield, R. A. Design of frames against buckling using a Rayleigh quotient approximation. American Institute of Aeronautics and Astronautics Journal, 1993, 31(6): 1143-1149.

Coh, S., Yu, P. Y., Aoki, Y., et al. Alternative structure of TiO2 with higher energy valence band edge. Physical Review B, 2017, 95(8): 085422.

Chen, H., Gong, X., He, L., et al. Numerical analysis of finite dimensional approximations of Kohn-Sham models. Advances in Computational Mathematics, 2013, 38(2): 225-256.

Chen, H., Dai, X., Gong, X., et al. Adaptive finite element approximations for Kohn-Sham models. Multiscale Modeling & Simulation, 2014, 12(4): 1828-1869.

Dai, X., Liu, Z., Zhang, L., et al. A conjugate gradient method for electronic structure calculations. SIAM Journal on Scientific Computing, 2017, 39(6): A2702-A2740.

Dai, X., Wang, Q., Zhou, A. Gradient flow based Kohn-Sham density functional theory model. Multiscale Modeling & Simulation, 2020, 18(4): 1621-1663.

Dirac, P. A. M. The principles of quantum mechanics. Oxford, UK, Oxford University Press, 1981.

Durán, R. G., Gastaldi, L., Padra, C. A posteriori error estimators for mixed approximations of eigenvalue problems. Mathematical Models and Methods in Applied Sciences, 1999, 9(8): 1165-1178.

Eckert, M. Sommerfeld’s atombau und spektrallinien, in research and pedagogy: A history of quantum physics through its textbooks, edited by M. Badino and J. Navarro, Edition Open Access, Berlin, pp. 117-135, 2013.

Edelman, A., Arias, T. A., Smith, S. T. The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis and Applications, 1998, 20(2): 303-353.

Francisco, J. B., Martinez, J. M., Martinez,L. Globally convergent trust-region methods for self-consistent field electronic structure calculations. The Journal of chemical physics, 2004, 121(22): 10863-10878.

Feng, X., Chen, M. H., Wu, Y., et al. A fully explicit and unconditionally energy-stable scheme for Peng-Robinson VT flash calculation based on dynamic modeling. Journal of Computational Physics, 2022, 463: 111275.

Francis, J. G. The QR transformation a unitary analogue to the LR transformation-Part 1. The Computer Journal, 1961, 4(3): 265-271.

Francis, J. G. The QR transformation-part 2. The Computer Journal, 1962, 4(4): 332-345.

Geltner, P. B. General Rayleigh quotient iteration. SIAM Journal on Numerical Analysis, 1981, 18(5): 839-843.

Greeley, J., Mavrikakis, M. Alloy catalysts designed from first principles. Nature materials, 2004, 3(11): 810-815.

Griffiths, D. J., Schroeter, D. F. Introduction to quantum mechanics. Cambridge, England, Cambridge University Press, 2018.

Gasiorowicz, S. Quantum physics. New Jersey, USA, John Wiley & Son Ltd, 2003.

Golebiewski, A. L. O. J. Z. Y., Taylor, H. S. Quantum theory of atoms and molecules. Annual Review of Physical Chemistry, 1967, 18(1): 353-408.

Gupta, A. K., Verma, K., Niazi, K. R. Robust coordinated control for damping low frequency oscillations in high wind penetration power system. International Transactions on Electrical Energy Systems, 2019, 29(5): e12006.

Gomer, R. Approaches to the theory of chemisorption. Accounts of Chemical Research, 1975, 8(12): 420-427.

Hammer, B., Norskov, J. K. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238-240.

Helmberg, C., Rendl, F. A spectral bundle method for semidefinite programming. SIAM Journal on Optimization, 2000, 10(3): 673-696.

Harne, R. L. The concurrent suppression of, and energy harvesting from, surface vibrations: Experimental investigations. In Active and Passive Smart Structures and Integrated Systems. SPIE, 2012, 8341: 493-504.

Huang, L., Qiu, D., Xie, F., et al. Modeling and stability analysis of a single-phase two-stage grid-connected photovoltaic system. Energies, 2017, 10(12): 2176.

Huang, B., Kwon, H., Ko, J., et al. Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying. Applied Surface Science, 2018, 429: 87-94.

Huzaifa, M., Shafiq, M., Ali, N., et al. Au-decorated Ti3C2 MXene sensor for enhanced detection of gaseous toxins (CO, COCl2, H2S, NH3, NO2): A DFT study. ACS omega, 2024, 10(1): 1562-1570.

Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864-B971.

He, W. Prabhu, N. Jacobi decomposition and eigenvalues of symmetric matrices, in discrete and computational geometry: The Goodman-Pollack Festschrift, edited by B. Aronov, S. Basu, J. Pach & M. Sharir, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 527-550, 2003.

Jackiw, R. Intermediate quantum mechanics. Boca Raton, USA, CRC Press, 2018.

Jiang, B., Dai, Y. H. A framework of constraint preserving update schemes for optimization on Stiefel manifold. Mathematical Programming, 2015, 153(2): 535-575.

Kohn, W., Sham, L. J. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133-A1138.

Kerdphol, T., Rahman, F. S., Watanabe, M., et al. Small-signal analysis of multiple virtual synchronous machines to enhance frequency stability of grid-connected high renewables. IET Generation, Transmission & Distribution, 2021, 15(8): 1273-1289.

Khazanov, V. B., Kublanovskaya, V. N. Spectral problems for matrix pencils: Methods and algorithms II. Russian Journal of Numerical Analysis and Mathematical Modelling, 1988, 3(6): 467-486.

Kressner, D. A block Newton method for nonlinear eigenvalue problems. Numerische Mathematik, 2009, 114(2): 355-372.

Kublanovskaya, V. N. On an approach to the solution of the generalized latent value problem for -matrices. SIAM Journal on Numerical Analysis, 1970, 7(4): 532-537.

Kashiwagi, M. A numerical method for eigensolution of locally modified systems based on the inverse power method. Finite Elements in Analysis and Design, 2009, 45(2): 113-120.

Kaniel, S. Estimates for some computational techniques in linear algebra. Mathematics of Computation, 1966, 20(95): 369-378.

Liu, X., Oishi, S. I. Guaranteed high-precision estimation for P0 interpolation constants on triangular finite elements. Japan Journal of Industrial and Applied Mathematics, 2013, 30(3): 635-652.

Liu, X., Oishi, S. I. Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM Journal on Numerical Analysis, 2013a, 51(3): 1634-1654.

Liu, X., Kikuchi, F. Analysis and estimation of error constants for P0 and P1 interpolations over triangular finite elements. Journal of Mathematical Sciences (Tokyo), 2010, 17(1): 27-78.

Li, P., Wei, H., Li, B., et al. Eigenvalue-optimisation-based optimal power flow with small-signal stability constraints. IET Generation, Transmission & Distribution, 2013, 7(5): 440-450.

Lima, E. E. S. A sensitivity analysis of eigenstructures [in power system dynamic stability]. IEEE transactions on power systems, 2002, 12(3): 1393-1399.

Li, Q., Li, Y., Zeng, W. Preparation and application of 2D MXene-based gas sensors: A review. Chemosensors, 2021, 9(8): 225.

Li, M., Wang, X. F. Two-dimensional th-BCP monolayer as a superior sensor for detecting toxic gases: A first-principles study. ACS Applied Electronic Materials, 2024, 6(9): 6440-6449.

Lü, B. L., Chen, G. Q., Zhou, W. L., et al. A density functional theory study on influence of 3d alloying elements on electrochemical properties of cobalt-base alloys. Computational materials science, 2013, 68: 206-211.

Liu, X., Wang, X., Wen, Z., et al. On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory. SIAM Journal on Matrix Analysis and Applications, 2014, 35(2): 546-558.

Liu, X., Wen, Z., Wang, X., et al. On the analysis of the discretized Kohn-Sham density functional theory. SIAM Journal on Numerical Analysis, 2015, 53(4): 1758-1785.

Montemore, M. M., Medlin, J. W. A unified picture of adsorption on transition metals through different atoms. Journal of the American Chemical Society, 2014, 136(26): 9272-9275.

Norsko, J. K. Chemisorption on metal surfaces. Reports on Progress in Physics, 1990, 53(10): 1253.

Nørskov, J. K., Rossmeisl, J., Logadottir, A., et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.

Nielsen, M. A., Chuang, I. L. Quantum computation and quantum information. Cambridge, UK, Cambridge University Press, 2010.

Nair, R. G. S., Nair, A. K. N., Yan, B., et al. Doped hexa-peri-hexabenzocoronene as anode materials for lithium-and magnesium-ion batteries. Physical Chemistry Chemical Physics, 2025, 27(1): 218-231.

Nair, R. G. S., Nair, A. K. N., Sun, S. Adsorption of drugs on B12N12 and Al12N12 nanocages. RSC advances, 2024, 14(43): 31756-31767.

Nair, R. G. S., Nair, A. K. N., Sun, S. Density functional theory study of doped coronene and circumcoronene as anode materials in lithium-ion batteries. Scientific Reports, 2024a, 14(1): 15220.

Nair, R. G. S., Nair, A. K. N., Sun, S. Adsorption of gases on B12N12 and Al12N12 nanocages. New Journal of Chemistry, 2024b, 48(18): 8093-8105.

Nair, R. G. S., Nair, A. K. N., Sun, S. Adsorption of hazardous gases on Cyclo [18] carbon and its analogues. Journal of Molecular Liquids, 2023, 389: 122923.

Nair, R. G. S., Nair, A. K. N., Sun, S. Adsorption of Gases on Fullerene-like X12Y12 (X= Be, Mg, Ca, B, Al, Ga, C; Y= C, Si, N, P, O) Nanocages. Energy & Fuels, 2023a, 37(18): 14053-14063.

Neumaier, A. Residual inverse iteration for the nonlinear eigenvalue problem. SIAM journal on numerical analysis, 1985, 22(5): 914-923.

Pacchioni, G. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Physical Chemistry Chemical Physics, 2013, 15(6): 1737-1757.

Parlett, B. N. Misconvergence in the Lanczos algorithm, in Reliable Numerical Computation, edited by M. G. Cox and S. Hammarling, Clarendon Press, Oxford, UK, pp. 7-24, 1990.

Patra, C., Guna, V. K., Chakraborty, S., et al. Advances in 2D transition metal Ddichalcogenide-based gas sensors. ACS sensors, 2025, 10(9): 6347-6379.

Quarteroni, A., Valli, A. Numerical approximation of partial differential equations. Berlin, Germany, Springer, 2008.  

Ren, M., Guo, X., Huang, S. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom. Chemical Engineering Journal, 2022, 433: 134270.

Schilling, N., Froyland, G., Junge, O. Higher-order finite element approximation of the dynamic laplacian. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54(5): 1777-1795.

Schwarzendahl, S. M., Neubauer, M., Wallaschek, J. Optimization of a passive piezoelectric damper for a viscously damped main system. Society of Photo-Optical Instrumentation Engineers, 2012, 8341: 68-77.

Schrödinger, E. An undulatory theory of the mechanics of atoms and molecules. Physical review, 1926, 28(6): 1049-1070.

Sherrill, C. D., Schaefer III, H. F. The configuration interaction method: Advances in highly correlated approaches. Advances in quantum chemistry. Academic Press, 1999, 34: 143-269.

Shen, J., Xu, J., Yang, J. A new class of efficient and robust energy stable schemes for gradient flows. SIAM Review, 2019, 61(3): 474-506.

Shen, L., Xu, Z., Lin, P.,et al. An energy stable C0 finite element scheme for a phase-field model of vesicle motion and deformation. SIAM Journal on Scientific Computing, 2022, 44(1): B122-B145.

Sleijpen, G. L., Booten, A. G., Fokkema, D. R., et al. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 1996, 36(3): 595-633.

Unger, H. Nichtlineare behandlung von eigenwertaufgaben. Zeitschrift Angewandte Mathematik und Mechanik, 1950, 30(8-9): 281-282.

Van Vleck, J. H. The theory of electric and magnetic susceptibilities. Oxford, UK, Oxford University Press, 1932.

Voss, H. An Arnoldi method for nonlinear eigenvalue problems. BIT numerical mathematics, 2004, 44(2): 387-401.

Walter, M. G., Warren, E. L., McKone, J. R., et al. Solar water splitting cells. Chemical reviews, 2010, 110(11): 6446-6473.

Wang, F., Su, Q., Zhang, X., et al. Spin-state regulation of single-atom catalysts: From quantum mechanisms to multidimensional dynamic regulation strategies. Advanced Functional Materials, 2025: e18600.

Wang, X., Chen, H., Kou, J., et al. An unconditionally energy-stable and orthonormality-preserving iterative scheme for the Kohn-Sham gradient flow based model. Journal of Computational Physics, 2024, 498: 112670.

Yang, X., Ju, L. Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 691-712.

Zheng, M. M., Li, S. J., Su, Y., et al. Catalytic properties of near-surface alloy of transition metal in aluminum: A density functional theory study of structural and electronic properties. The Journal of Physical Chemistry C, 2013, 117(47): 25077-25089.

Zhou, A. An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity, 2003, 17(2): 541.

Downloads

Download data is not yet available.

Downloads

Published

2025-06-20

How to Cite

Peng, N., & Sun, S. (2025). A gradient flow-based robust algorithm for solving a sequence of smallest eigenvalues with applications. Computational Energy Science, 2(2), 24–37. Retrieved from https://compes.yandypress.com/index.php/3007-5602/article/view/52

Issue

Section

Articles